

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

7

Phone: 508-647-7000

The MathWorks, Inc. 3 Apple Hill Drive Natick, MA 01760-2098

MATLAB® Creating Graphical User Interfaces

© COPYRIGHT 2000–2014 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for more information.

Revision History

November 2000	Online Only	New for MATLAB 6.0 (Release 12)
June 2001	Online Only	Revised for MATLAB 6.1 (Release 12.1)
July 2002	Online Only	Revised for MATLAB 6.6 (Release 13)
June 2004	Online Only	Revised for MATLAB 7.0 (Release 14)
October 2004	Online Only	Revised for MATLAB 7.0.1 (Release 14SP1)
March 2005	Online Only	Revised for MATLAB 7.0.4 (Release 14SP2)
September 2005	Online Only	Revised for MATLAB 7.1 (Release 14SP3)
March 2006	Online Only	Revised for MATLAB 7.2 (Release 2006a)
May 2006	Online Only	Revised for MATLAB 7.2
September 2006	Online Only	Revised for MATLAB 7.3 (Release 2006b)
March 2007	Online Only	Revised for MATLAB 7.4 (Release 2007a)
September 2007	Online Only	Revised for MATLAB 7.5 (Release 2007b)
March 2008	Online Only	Revised for MATLAB 7.6 (Release 2008a)
October 2008	Online Only	Revised for MATLAB 7.7 (Release 2008b)
March 2009	Online Only	Revised for MATLAB 7.8 (Release 2009a)
September 2009	Online Only	Revised for MATLAB 7.9 (Release 2009b)
March 2010	Online Only	Revised for MATLAB 7.10 (Release 2010a)
September 2010	Online Only	Revised for MATLAB 7.11 (Release 2010b)
April 2011	Online Only	Revised for MATLAB 7.12 (Release 2011a)
September 2011	Online Only	Revised for MATLAB 7.13 (Release 2011b)
March 2012	Online Only	Revised for MATLAB 7.14 (Release 2012a)
September 2012	Online Only	Revised for MATLAB 8.0 (Release 2012b)
March 2013	Online Only	Revised for MATLAB 8.1 (Release 2013a)
September 2013	Online Only	Revised for MATLAB 8.2 (Release 2013b)
March 2014	Online Only	Revised for MATLAB 8.3 (Release 2014a)
October 2014	Online Only	Revised for MATLAB 8.4 (Release 2014b)

Introduction to Creating GUIs

	About GUIs in MATLAB Softw	vare
	What Is a GUI?	1-2
	How Does a GUI Work?	1-4
	Ways to Build MATLAB GUIs	1-5
2	How to Create a GUI with GU	IDE
• (Create a Simple GUIDE GUI	2-2 2-2
	Set the GUI Figure Size in GUIDE	2-5
	Layout the Simple GUIDE GUI	2-6 2-16
	Code the Simple GUIDE GUI Behavior Open and Run the Simple GUIDE GUI	2-16 2-22
	Files Generated by GUIDE	2-24
	Code Files and FIG-Files	2-24
	GUI Code File Structure Adding Callback Templates to an Existing GUI Code	2-25
	File	2-25
	About GUIDE-Generated Callbacks	2-26

GUIDE Preferences

GUIDE Options

A Simple Programmatic GIII

5-2

5-2

5-2

5-4

5-4

5-8

5-8

5-9

5-9

Lay Out a	GUIDE
GUIDE Templates	
Access the Templates	
Set the GUIDE GUI Size	
Window	
Set the GUI Position or Size to an Exact Value	
Maximize the Layout Area	
GUIDE Components	
Add Components to the GUIDE Layout Area .	
Place Components	
User Interface Controls	
Panels and Button Groups	
Axes	
Table	
ActiveX Component	
Resize GUIDE GUI Components	
Copy, Paste, and Arrange Components	
Select Components	
Copy, Cut, and Clear Components	
Paste and Duplicate Components	
Front-to-Back Positioning	
Locate and Move Components	
Use Coordinate Readouts	
Drag Components	
Use Arrow Keys to Move Components	
Set the Component's Position Property	

Generate FIG-File and MATLAB File

5-10

5-12

Align GUIDE GUI Components	6-79
Align Objects Tool	6-79
Property Inspector	6-82
Grid and Rulers	6-85
Guide Lines	6-86
Customize Tabbing Behavior in a GUIDE GUI	6-88
Create Menus for GUIDE GUIs	6-91
Menus for the Menu Bar	6-91
Context Menus	6-101
Create Toolbars for GUIDE GUIs	6-108
Toolbar and Tools	6-108
Editing Tool Icons	6-116
View the GUIDE GUI Object Hierarchy	6-119
Design GUIDE GUIs for Cross-Platform Compatibility	6-120
Default System Font	6-120
Standard Background Color	6-121
Cross-Platform Compatible Units	6-121
GUI Design References	6-123
Save and Run a GUIDE	GUI
Save a GUIDE GUI	7-2
Save a GUI	7-2
Create a Backward Compatible GUIDE Fig-File	7-2 7-2
Append New Callbacks to an Existing GUIDE Code	. 2
File	7-3
Create a Programmatic GUI Code File from GUIDE GUI	
Files	7-4
Rename GUIDE GUIs and GUI Files	7-5

0	ſ
Ö	

Callbacks for Different User Actions	
GUIDE-Generated Callback Functions and Property	. 0-2
Values	. 8-4
GUIDE Callback Syntax	
Renaming and Removing GUIDE-Generated Callbacks	
Tenaming and temoving delibit denerated cambacks	. 09
Initialize a GUIDE GUI	. 8-7
Opening Function	
Output Function	8-10
Output I allowed	0 10
Callbacks for Specific Components	8-12
How to Use the Example Code	8-12
Push Button	8-13
Toggle Button	8-13
Radio Button	8-14
Check Box	8-14
	_
Edit Text	
Slider	
List Box	8-17
Pop-Up Menu	
Panel	8-21
Button Group	8-22
Menu Item	8-23
Table	8-26
Axes	8-27
Examples of GUIDE GUIs	8-30
Examples of GUIDE	GIIIs
Examples of GCIBE	- G C 15
Modal Dialog Box in a GUIDE GUI	. 9-2
About the Example	. 9-2
Set Up the Close Confirmation Dialog Box	
Set Up a GUI with a Close Button	
•	_

Run the Close Confirmation GUI	9-4 9-5
GUI For Managing Persistent Data About the Example Calling Syntax MAT-file Validation GUI Behavior Overall GUI Characteristics	9-7 9-7 9-8 9-9 9-10 9-17
GUI That Accepts Parameters and Generates Plots About the Example	9-20 9-20 9-22 9-24 9-27
Synchronized Data Presentations in a GUIDE GUI About the Example	9-30 9-30 9-32
Interactive List Box in a GUIDE GUI About the Example	9-46 9-46 9-47
Plot Workspace Variables in a GUIDE GUI About the Example	9-52 9-52 9-53 9-54
About the Example How to Use the Simulink Parameters GUI Run the GUI Program the Slider and Edit Text Components Run the Simulation from the GUI Remove Results from List Box Plot Results Data The GUI Help Button Close the GUI The List Box Callback and Create Function	9-57 9-57 9-58 9-59 9-60 9-62 9-64 9-66 9-66
Animation with Slider Controls in a GUIDE GUI About the Example	9-68 9-68

Design the 3-D Globe GUI	9-69
Graphics Techniques Used in the 3-D Globe GUI \ldots	9-74
Automatically Refresh Plot in a GUIDE GUI	9-79
About the Example	9-79
How the GUI Implements the Timer	9-81

Create GUIs Programmatically

Lay Out a Programmatic GUI

7	\wedge
	- ()
	v

Structure of a Programmatic GUI File	10-2 10-2
File Organization	
File Template	10-2
Run the GUI	10-3
Create Figures for Programmatic GUIs	10-4
Programmatic Components	10-6
Add Components to a Programmatic GUI	10-9
Add User Interface Controls to a Programmatic GUI	10-9
Add Panels and Button Groups	10-29
Add Axes	10-35
Add ActiveX Controls	10-38
Layout a GUI Programmatically	10-40
Component Placement and Sizing	10-40
Managing the Layout in Resizable GUIs	10-45
Manage the Stacking Order of Grouped Components .	10-48
Adjust Programmatic GUI Layouts Interactively	10-49
Set Positions of Components Interactively	10-50
Align Components	10-60
Set Colors Interactively	10-67
Set Font Characteristics Interactively	10-68

	Customize Tabbing Behavior in a Programmatic GUI	10-71
	How Tabbing Works	10-71
	Default Tab Order	10-71
	Change the Tab Order in the uipanel	10-73
	Create Menus for Programmatic GUIs	10-75
	Add Menu Bar Menus	10-75
	Add Context Menus to a Programmatic GUI	10-82
	Add Context Mends to a Programmatic GCI	10-02
	Create Toolbars for Programmatic GUIs	10-88
	Use the uitoolbar Function	10-88
	Commonly Used Properties	10-88
	Toolbars	10-89
	Display and Modify the Standard Toolbar	10-92
	Fonts and Colors for Cross Platform Compatibility	10.04
	Fonts and Colors for Cross-Platform Compatibility.	10-94
	Default System Font	10-94
	Standard Background Color	10-95
11	Code a Programmation	GUI
"	Initialize a Programmatic GUI	11-2
	Examples	11-2
	Write Callbacks Using the Programmatic Workflow	11-5
	Callbacks for Different User Actions	11-5
	How to Specify Callback Property Values	11-7
	Callback Syntax	11-9
	Camback Symbax	11-3
	Manage Application-Defined	Data
12		
		12-2
	Shara Data Among Callbacks	
	Share Data Among Callbacks	
	Overview of Data Sharing Techniques	12-2
	Overview of Data Sharing Techniques Store Data in UserData or Other Object Properties	12-2 12-3
	Overview of Data Sharing Techniques	12-2

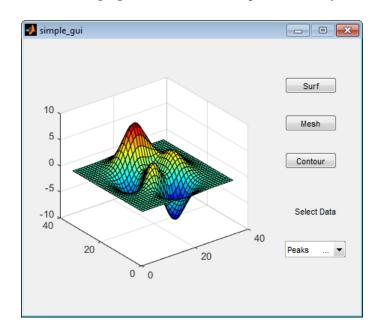
	Create Nested Callback Functions (Programmatic GUIs)	12-5
	Store Data Using the guidata Function	12-6
	Sharing Data Among Multiple GUIDE GUIs	12-9
	Manage Callback Exec	ution
3		
	Interrupt Callback Execution	13-2 13-2 13-10
A [Examples of GUIs Created Programmati	cally
4		
	Axes, Menus, and Toolbars in Programmatic GUIs	14-2
	About the Example	14-2
	View the Example Code	14-3
	Generate the Graphing Commands and Data	14-3
	Create the GUI and Its Components	14-4
	Initialize the GUI	14-7
	Define the Callbacks	14-8
	Updating the Plot	14-11
	Synchronized Data Presentations in a Programmatic	
	GUI	14-12
	Techniques Illustrated in the Example	14-12
	About the Example	14-12 $14-14$
	View the Example Code	14-14
	Lists of Items in a Programmatic GUI	14-20
	About the Example	14-20
	View the Example Code	14-21
	Use the GUI	14-22
	Program List Master	14-25
	Add an "Import from File" Option to List Master	14-31

	Add a "Rename List" Option to List Master	14-31
	GUI That Accepts and Returns Arguments	14-32
	About the Example	14 - 32
	Copy and View the Color Palette Code	14-34
	Local Function Summary for Color Palette	14-34
	Code File Organization	14 - 35
	GUI Programming Techniques	14-36
		Apps
15		
	Find Apps	15-2
	View App File List	15-3
	Before Installing	15-3
	After Installing	15-3
	Run, Uninstall, Reinstall, and Install Apps	15-5
	Run App	15-5
	Install or Reinstall App	15-5
	Uninstall App	15-6
	Install Apps in a Shared Network Location	15-7
	Change Apps Installation Folder	15-8
• / -	Packaging GUIs as	Apps
16		
	Apps Overview	16-2
	What Is an App?	16-2
	Where to Get Apps	16-2
	Why Create an App?	16-3
	Best Practices and Requirements for Creating an App	16-4
	Package Apps	16-5

Modify Apps	16-7
Share Apps	16-8
MATLAB App Installer File — mlappinstall	16-9
Dependency Analysis	16-10

Introduction to Creating GUIs

About GUIs in MATLAB Software


- "What Is a GUI?" on page 1-2
- "How Does a GUI Work?" on page 1-4
- "Ways to Build MATLAB GUIs" on page 1-5

What Is a GUI?

A graphical user interface (GUI) is a graphical display in one or more windows containing controls, called *components*, that enable a user to perform interactive tasks. The user of the GUI does not have to create a script or type commands at the command line to accomplish the tasks. Unlike coding programs to accomplish tasks, the user of a GUI need not understand the details of how the tasks are performed.

GUI components can include menus, toolbars, push buttons, radio buttons, list boxes, and sliders—just to name a few. GUIs created using MATLAB tools can also perform any type of computation, read and write data files, communicate with other GUIs, and display data as tables or as plots.

The following figure illustrates a simple GUI that you can easily build yourself.

The GUI contains

- An axes component
- A pop-up menu listing three data sets that correspond to MATLAB functions: peaks, membrane, and sinc

- · A static text component to label the pop-up menu
- · Three buttons that provide different kinds of plots: surface, mesh, and contour

When you click a push button, the axes component displays the selected data set using the specified type of 3-D plot.

How Does a GUI Work?

Typically, GUIs wait for an end user to manipulate a control, and then respond to each user action in turn. Each control, and the GUI itself, has one or more *callbacks*, named for the fact that they "call back" to MATLAB to ask it to do things. A particular user action, such as pressing a screen button, or passing the cursor over a component, triggers the execution of each callback. The GUI then responds to these *events*. You, as the GUI creator, write callbacks that define what the components do to handle events.

This kind of programming is often referred to as *event-driven* programming. In event-driven programming, callback execution is *asynchronous*, that is, events external to the software trigger callback execution. In the case of MATLAB GUIs, most events are user interactions with the GUI, but the GUI can respond to other kinds of events as well, for example, the creation of a file or connecting a device to the computer.

You can code callbacks in two distinct ways:

- As MATLAB language functions stored in files
- As strings containing MATLAB expressions or commands (such as 'c = sqrt(a*a + b*b); 'or 'print')

Using functions stored in code files as callbacks is preferable to using strings, because functions have access to arguments and are more powerful and flexible. You cannot use MATLAB scripts (sequences of statements stored in code files that do not define functions) as callbacks.

Although you can provide a callback with certain data and make it do anything you want, you cannot control when callbacks execute. That is, when your GUI is being used, you have no control over the sequence of events that trigger particular callbacks or what other callbacks might still be running at those times. This distinguishes event-driven programming from other types of control flow, for example, processing sequential data files.

Ways to Build MATLAB GUIs

A MATLAB GUI is a figure window to which you add user-operated components. You can select, size, and position these components as you like. Using callbacks you can make the components do what you want when the user clicks or manipulates the components with keystrokes.

You can build MATLAB GUIs in two ways:

· Use GUIDE (GUI Development Environment), an interactive GUI construction kit.

This approach starts with a figure that you populate with components from within a graphic layout editor. GUIDE creates an associated code file containing callbacks for the GUI and its components. GUIDE saves both the figure (as a FIG-file) and the code file. Opening either one also opens the other to run the GUI.

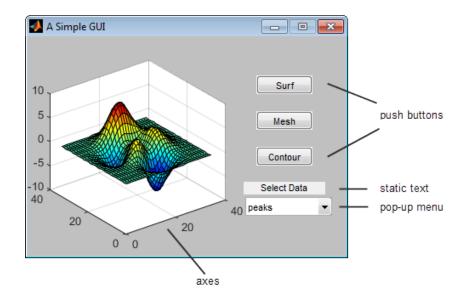
Create code files that generate GUIs as functions or scripts (programmatic GUI construction).

Using this approach, you create a code file that defines all component properties and behaviors. When a user executes the file, it creates a figure, populates it with components, and handles user interactions. Typically, the figure is not saved between sessions because the code in the file creates a new one each time it runs.

The code files of the two approaches look different. Programmatic GUI files are generally longer, because they explicitly define every property of the figure and its controls, as well as the callbacks. GUIDE GUIs define most of the properties within the figure itself. They store the definitions in its FIG-file rather than in its code file. The code file contains callbacks and other functions that initialize the GUI when it opens.

You can create a GUI with GUIDE and then modify it programmatically. However, you cannot create a GUI programmatically and then modify it with GUIDE.

The GUI-building technique you choose depends on your experience, your preferences, and the kind of application you need the GUI to operate. This table outlines some possibilities.


Type of GUI	Technique
Dialog box	MATLAB software provides a selection of
	standard dialog boxes that you can create
	with a single function call. For an example,

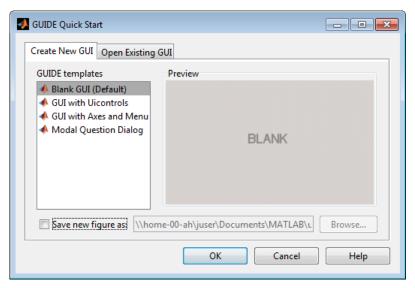
Type of GUI	Technique
	see the documentation for msgbox, which also provides links to functions that create specialized predefined dialog boxes.
GUI containing just a few components	It is often simpler to create GUIs that contain only a few components programmatically. You can fully define each component with a single function call.
Moderately complex GUIs	GUIDE simplifies the creation of moderately complex GUIs.
Complex GUIs with many components, and GUIs that require interaction with other GUIs	Creating complex GUIs programmatically lets you control exact placement of the components and provides reproducibility.

How to Create a GUI with GUIDE

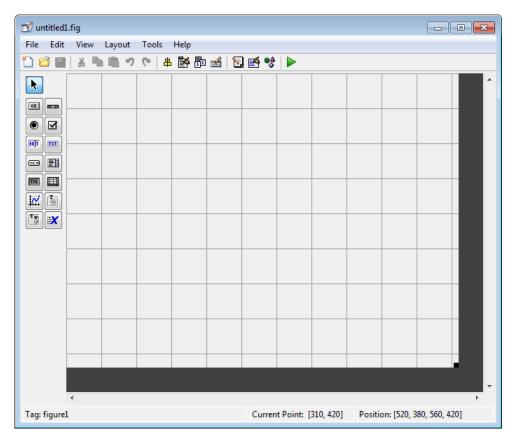
Create a Simple GUIDE GUI

This example shows how to create a simple GUIDE graphical user interface (GUI), such as shown in the following figure.

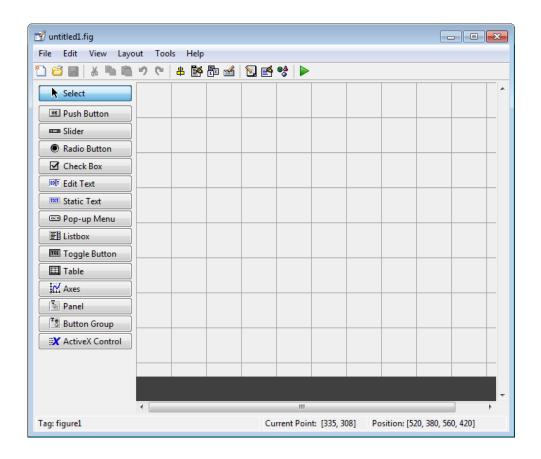
Subsequent topics guide you through the process of creating this GUI.


If you prefer to view and run the code that created this GUI without creating it, set your current folder to one to which you have write access. Copy the example code and open it in the Editor by issuing the following MATLAB commands:

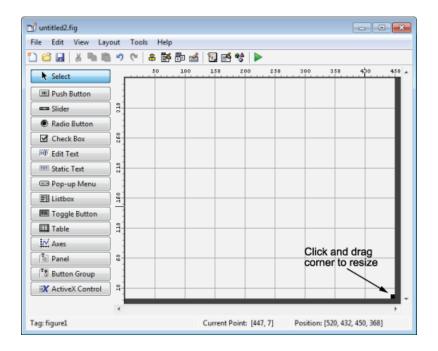
```
copyfile(fullfile(docroot, 'techdoc','creating_guis',...
    'examples','simple_gui*.*')),fileattrib('simple_gui*.*', '+w');
guide simple_gui.fig;
edit simple_gui.m
```


To run the GUI, on the **Editor** tab, in the **Run** section, click **Run** .

Open a New GUI in the GUIDE Layout Editor

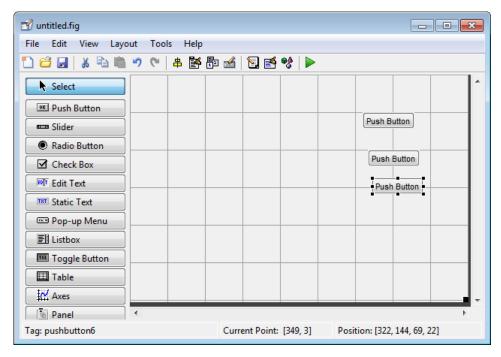

1 Start GUIDE by typing guide at the MATLAB prompt.

2 In the GUIDE Quick Start dialog box, select the **Blank GUI (Default)** template, and then click **OK**.

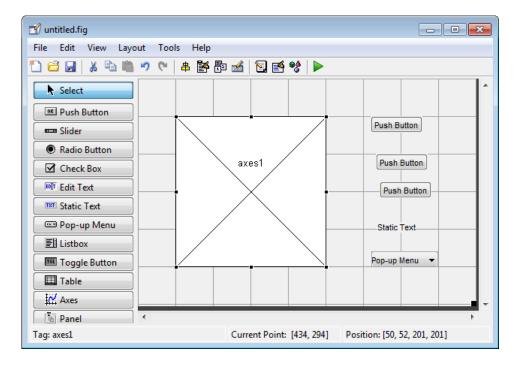


- 3 Display the names of the GUI components in the component palette:
 - a Select File > Preferences > GUIDE.
 - **b** Select **Show names in component palette**.
 - c Click OK.

Set the GUI Figure Size in GUIDE

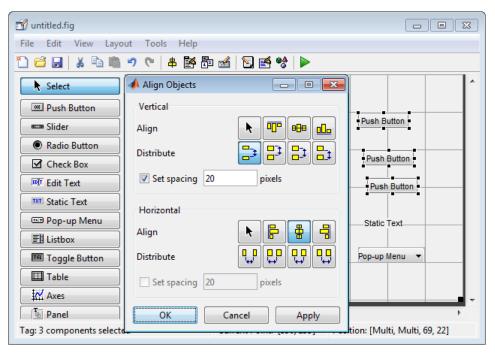

Set the size of the GUI by resizing the grid area in the Layout Editor. Click the lower-right corner and drag it until the GUI is approximately 3 in. high and 4 in. wide. If necessary, make the window larger.

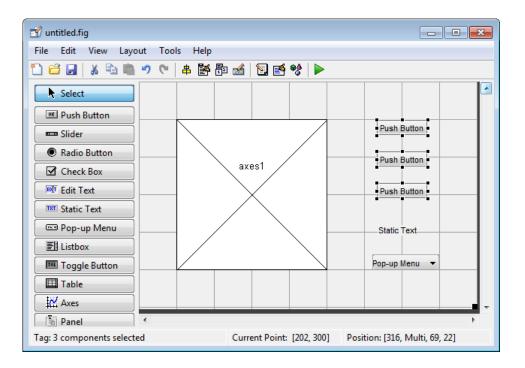
Layout the Simple GUIDE GUI


Add, align, and label the components in the GUI.

1 Add the three push buttons to the GUI. Select the push button tool from the component palette at the left side of the Layout Editor and drag it into the layout area. Create three buttons, positioning them approximately as shown in the following figure.

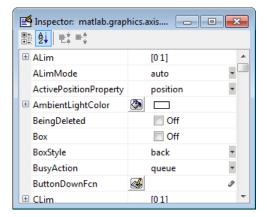
- **2** Add the remaining components to the GUI.
 - A static text area
 - · A pop-up menu
 - An axes

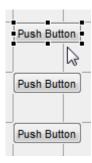

Arrange the components as shown in the following figure. Resize the axes component to approximately 2-by-2 inches.


Align the Components

If several components have the same parent, you can use the Alignment Tool to align them to one another. To align the three push buttons:

- 1 Select all three push buttons by pressing Ctrl and clicking them.
- 2 Select Tools > Align Objects.
- **3** Make these settings in the Alignment Tool:
 - · Left-aligned in the horizontal direction.
 - · 20 pixels spacing between push buttons in the vertical direction.


4 Click OK.


Label the Push Buttons

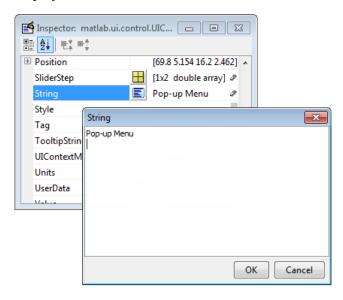
Each of the three push buttons specifies a plot type: surf, mesh, and contour. This topic shows you how to label the buttons with those options.

1 Select View > Property Inspector.

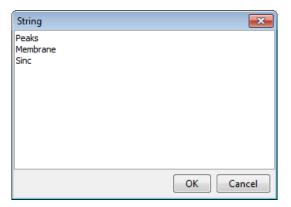
2 In the layout area, click the top push button.

3 In the Property Inspector, select the String property, and then replace the existing value with the word Surf.

4 Click outside the String field. The push button label changes to Surf.



5 Click each of the remaining push buttons in turn and repeat steps 3 and 4. Label the middle push button **Mesh**, and the bottom button **Contour**.

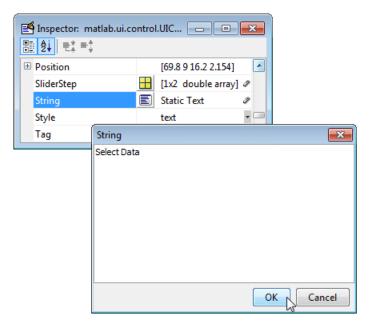

List Pop-Up Menu Items

The pop-up menu provides a choice of three data sets: peaks, membrane, and sinc. These data sets correspond to MATLAB functions of the same name. This topic shows you how to list those data sets as choices in the pop-menu.

- 1 In the layout area, click the pop-up menu.
- 2 In the Property Inspector, click the button next to String. The String dialog box displays.

3 Replace the existing text with the names of the three data sets: Peaks, Membrane, and Sinc. Press **Enter** to move to the next line.

4 When you finish editing the items, click **OK**.


The first item in your list, Peaks, appears in the pop-up menu in the layout area.

Modify the Static Text

In this GUI, the static text serves as a label for the pop-up menu. This topic shows you how to change the static text to read Select Data.

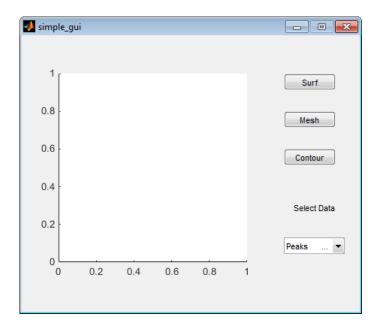
- 1 In the layout area, click the static text.
- 2 In the Property Inspector, click the button next to String. In the String dialog box that displays, replace the existing text with the phrase Select Data.

3 Click OK.

The phrase Select Data appears in the static text component above the pop-up menu.

Save the GUI Layout

When you save a GUI, GUIDE creates two files, a FIG-file and a code file. The FIG-file, with extension .fig, is a binary file that contains a description of the layout. The code file, with extension .m, contains MATLAB functions that control the GUI behavior.


- 1 Save and activate your GUI by selecting **Tools** > **Run**.
- **2** GUIDE displays a dialog box displaying: "Activating will save changes to your figure file and MATLAB code. Do you wish to continue?

Click Yes.

- **3** GUIDE opens a **Save As** dialog box in your current folder and prompts you for a FIG-file name.
- 4 Browse to any folder for which you have write privileges, and then enter the file name simple_gui for the FIG-file. GUIDE saves both the FIG-file and the code file using this name.
- 5 If the folder in which you save the GUI is not on the MATLAB path, GUIDE opens a dialog box, giving you the option of changing the current folder to the folder containing the GUI files, or adding that folder to the top or bottom of the MATLAB path.
- **6** GUIDE saves the files simple_gui.fig and simple_gui.m, and then activates the GUI. It also opens the GUI code file in your default editor.

The GUI opens in a new window. Notice that the GUI lacks the standard menu bar and toolbar that MATLAB figure windows display. You can add your own menus and toolbar buttons with GUIDE, but by default a GUIDE GUI includes none of these components.

When you run simple_gui, you can select a data set in the pop-up menu and click the push buttons, but nothing happens. This is because the code file contains no statements to service the pop-up menu and the buttons.

To run a GUI created with GUIDE without opening GUIDE, execute its code file by typing its name.

simple gui

You can also use the run command with the code file, for example,

run simple gui

Note: Do not attempt to run a GUIDE GUI by opening its FIG-file outside of GUIDE. If you do so, the figure opens and appears ready to use, but the GUI does not initialize and its callbacks do not function.

Code the Simple GUIDE GUI Behavior

When you saved your GUI in the previous topic, "Save the GUI Layout" on page 2-14, GUIDE created two files: a FIG-file simple_gui.fig that contains the GUI layout and a file, simple_gui.m, that contains the code that controls how the GUI behaves. The code consists of a set of MATLAB functions (that is, it is not a script). But the GUI did

not respond because the functions contain no statements that perform actions yet. This topic shows you how to add code to the file to make the GUI do things.

Generate Data to Plot

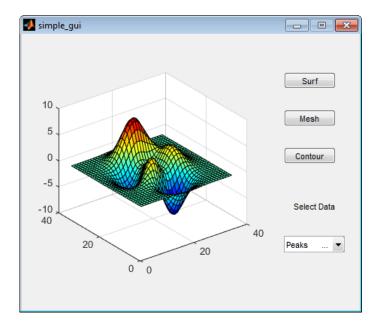
This topic shows you how to generate the data to be plotted when the GUI user clicks a button. The *opening function* generates this data by calling MATLAB functions. The opening function, which initializes a GUI when it opens, is the first callback in every GUIDE-generated GUI code file.

In this example, you add code that creates three data sets to the opening function. The code uses the MATLAB functions peaks, membrane, and sinc.

- 1 Display the opening function in the MATLAB Editor.
 - If the file **simple_gui.m** is not already open in the editor, open from the Layout Editor by selecting **View** > **Editor**.
- 2 On the **EDITOR** tab, in the **NAVIGATE** section, click **Go To**, and then select simple gui OpeningFcn.

The cursor moves to the opening function, which contains this code:

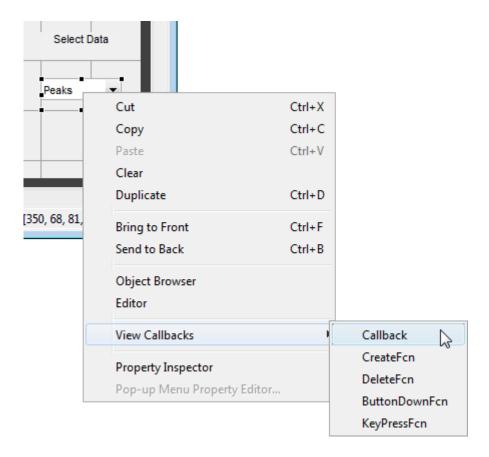
```
% --- Executes just before simple_gui is made visible.
function simple_gui_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to simple_gui (see VARARGIN)
% Choose default command line output for simple_gui
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
% UIWAIT makes simple_gui wait for user response (see UIRESUME)
% uiwait(handles.figure1);
```


3 Create data for the GUI to plot by adding the following code to the opening function immediately after the comment that begins % varargin...

```
% Create the data to plot.
handles.peaks=peaks(35);
handles.membrane=membrane;
[x,y] = meshgrid(-8:.5:8);
r = sqrt(x.^2+y.^2) + eps;
sinc = sin(r)./r;
```

```
handles.sinc = sinc;
% Set the current data value.
handles.current_data = handles.peaks;
surf(handles.current data)
```

The first six executable lines create the data using the MATLAB functions peaks, membrane, and sinc. They store the data in the handles structure, an argument provided to all callbacks. Callbacks for the push buttons can retrieve the data from the handles structure.


The last two lines create a current data value and set it to peaks, and then display the surf plot for peaks. The following figure shows how the GUI now looks when it first displays.

Code Pop-Up Menu Behavior

The pop-up menu presents options for plotting the data. When the GUI user selects one of the three plots, MATLAB software sets the pop-up menu Value property to the index of the selected string. The pop-up menu callback reads the pop-up menu Value property to determine the item that the menu currently displays, and sets handles.current data accordingly.

Display the pop-up menu callback in the MATLAB Editor. In the GUIDE Layout Editor, right-click the pop-up menu component, and then select View Callbacks > Callback.

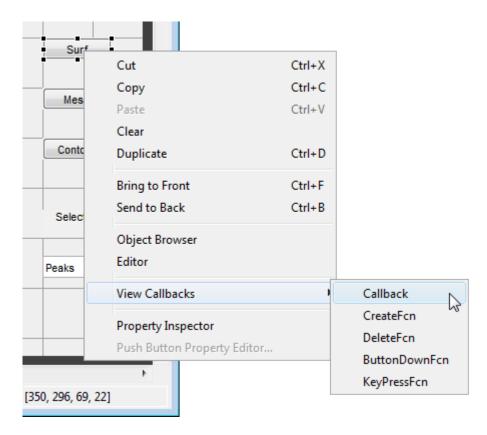
GUIDE displays the GUI code file in the Editor, and moves the cursor to the popmenu callback, which contains this code:

```
% --- Executes on selection change in popupmenu1.
function popupmenu1_Callback(hObject, eventdata, handles)
% hObject handle to popupmenu1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
```

2 Add the following code to the popupmenu1_Callback after the comment that begins % handles...

This code first retrieves two pop-up menu properties:

- String a cell array that contains the menu contents
- Value the index into the menu contents of the selected data set


The code then uses a **Switch** statement to make the selected data set the current data. The last statement saves the changes to the **handles** structure.

```
% Determine the selected data set.
str = get(hObject, 'String');
val = get(hObject, 'Value');
% Set current data to the selected data set.
switch str{val};
case 'Peaks' % User selects peaks.
    handles.current_data = handles.peaks;
case 'Membrane' % User selects membrane.
    handles.current_data = handles.membrane;
case 'Sinc' % User selects sinc.
    handles.current_data = handles.sinc;
end
% Save the handles structure.
guidata(hObject, handles)
```

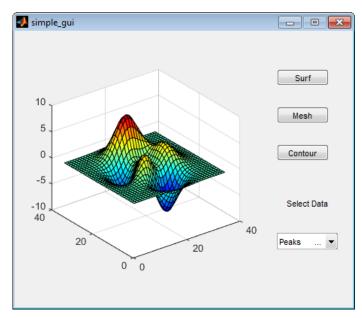
Code Push Button Behavior

Each of the push buttons creates a different type of plot using the data specified by the current selection in the pop-up menu. The push button callbacks get data from the handles structure and then plot it.

Display the **Surf** push button callback in the MATLAB Editor. In the Layout Editor, right-click the **Surf** push button, and then select **View Callbacks** > **Callback**.

In the Editor, the cursor moves to the **Surf** push button callback in the GUI code file, which contains this code:

```
% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
```


- 2 Add the following code to the callback immediately after the comment that begins % handles...
 - % Display surf plot of the currently selected data. surf(handles.current data);
- **3** Repeat steps 1 and 2 to add similar code to the **Mesh** and **Contour** push button callbacks.

- Add this code to the **Mesh** push button callback, pushbutton2 Callback:
 - % Display mesh plot of the currently selected data. mesh(handles.current data);
- Add this code to the Contour push button callback, pushbutton3 Callback:
 - % Display contour plot of the currently selected data. contour(handles.current data);
- **4** Save your code by selecting **File > Save**.

Open and Run the Simple GUIDE GUI

In "Code the Simple GUIDE GUI Behavior" on page 2-16, you programmed the popup menu and the push buttons. You also created data for them to use and initialized the display. Now you can run your GUI and see how it works.

1 Run your GUI from the Layout Editor by selecting **Tools** > **Run**.

2 In the pop-up menu, select **Membrane**, and then click the **Mesh** button. The GUI displays a mesh plot of the MathWorks[®] L-shaped Membrane logo.

3 Try other combinations before closing the GUI.

Files Generated by GUIDE

In this section...

"Code Files and FIG-Files" on page 2-24

"GUI Code File Structure" on page 2-25

"Adding Callback Templates to an Existing GUI Code File" on page 2-25

"About GUIDE-Generated Callbacks" on page 2-26

Code Files and FIG-Files

By default, the first time you save or run a GUI, GUIDE stores the GUI in two files:

- A FIG-file, with extension .fig, that contains a complete description of the GUI layout and each UI component, such as push buttons, axes, panels, menus, and so on. The FIG-file is a binary file and you cannot modify it except by changing the layout in GUIDE. FIG-files are specializations of MAT-files. See "Writing Custom Applications to Read and Write MAT-Files" for more information.
- A code file, with extension .m, that initially contains initialization code and templates
 for some callbacks that control GUI behavior. You generally add callbacks you write
 for your UI components to this file. As the callbacks are functions, the GUI code file
 can never be a MATLAB script.

When you save your GUI the first time, GUIDE automatically opens the code file in your default editor.

The FIG-file and the code file must have the same name. These two files usually reside in the same folder, and correspond to the tasks of laying out and programming the GUI. When you lay out the GUI in the Layout Editor, your components and layout is stored in the FIG-file. When you program the GUI, your code is stored in the corresponding code file.

If your GUI includes $\mathsf{ActiveX}^{\texttt{@}}$ components, GUIDE also generates a file for each $\mathsf{ActiveX}$ component.

For more information about FIG-files and code files, see "Save a GUIDE GUI".

GUI Code File Structure

The GUI code file that GUIDE generates is a function file. The name of the main function is the same as the name of the code file. For example, if the name of the code file is mygui.m, then the name of the main function is mygui. Each callback in the file is a local function of that main function.

When GUIDE generates a code file, it automatically includes templates for the most commonly used callbacks for each component. The code file also contains initialization code, as well as an opening function callback and an output function callback. It is your job to add code to the component callbacks for your GUI to work as you want. You can also add code to the opening function callback and the output function callback. The GUI code file orders functions as shown in the following table.

Section	Description
Comments	Displayed at the command line in response to the help command. Edit comments as necessary for your GUI.
Initialization	GUIDE initialization tasks. Do not edit this code.
Opening function	Performs your initialization tasks before the GUI user has access to the GUI.
Output function	Returns outputs to the MATLAB command line after the opening function returns control and before control returns to the command line.
Component and figure callbacks	Control the behavior of the GUI figure and of individual components. MATLAB software calls a callback in response to a particular event for a component or for the figure itself.
Utility/helper functions	Perform miscellaneous functions not directly associated with an event for the figure or a component.

Adding Callback Templates to an Existing GUI Code File

When you save the GUI, GUIDE automatically adds templates for some callbacks to the code file. If you want to add other callbacks to the file, you can easily do so.

Within GUIDE, you can add a local callback function template to the code in any of the following ways. Select the component for which you want to add the callback, and then:

- Right-click the mouse button, and from the View callbacks submenu, select the desired callback.
- From View > View Callbacks, select the desired callback.
- Double-click a component to show its properties in the Property Inspector. In the Property Inspector, click the pencil-and-paper icon next to the name of the callback you want to install in the code file.
- For toolbar buttons, in the Toolbar Editor, click the View button next to Clicked Callback (for Push Tool buttons) or On Callback, or Off Callback (for Toggle Tools).

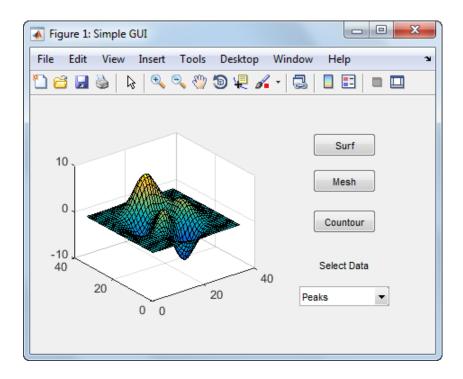
When you perform any of these actions, GUIDE adds the callback template to the GUI code file, saves it, and opens it for editing at the callback you just added. If you select a callback that currently exists in the GUI code file, GUIDE adds no callback, but saves the file and opens it for editing at the callback you select.

For more information, see "GUIDE-Generated Callback Functions and Property Values" on page 8-4.

About GUIDE-Generated Callbacks

Callbacks created by GUIDE for UI components are similar to callbacks created programmatically, with certain differences.

- GUIDE generates callbacks as function templates within the GUI code file, which UI components call via function handles.
 - GUIDE names callbacks based on the callback type and the component Tag property. For example, togglebutton1_Callback is such a default callback name. If you change a component Tag, GUIDE renames all its callbacks in the code file to contain the new tag. You can change the name of a callback, replace it with another function, or remove it entirely using the Property Inspector.
- · GUIDE provides three arguments to callbacks, always named the same.
- You can append arguments to GUIDE-generated callbacks, but never alter or remove the ones that GUIDE places there.
- You can rename a GUIDE-generated callback by editing its name or by changing the component Tag.
- You can delete a callback from a component by clearing it from the Property Inspector; this action does not remove anything from the code file.


• You can specify the same callback function for multiple components to enable them to share code.

After you delete a component in GUIDE, all callbacks it had remain in the code file. If you are sure that no other component uses the callbacks, you can then remove the callback code manually. For details, see "Renaming and Removing GUIDE-Generated Callbacks" on page 8-5.

A Simple Programmatic GUI

Create a Simple Programmatic GUI

This example shows how to create a simple programmatic GUI, such as shown here.

Subsequent topics guide you through the process of creating this GUI.

If you prefer to view and run the code that created this GUI without creating it, set your current folder to one to which you have write access. Copy the example code and open it in the Editor by issuing the following MATLAB commands:

```
copyfile(fullfile(docroot, 'techdoc','creating_guis',...
   'examples','simple_gui2*.*')), fileattrib('simple_gui2*.*', '+w');
edit simple_gui2.m
```

To run the GUI, on the **Editor** tab, in the **Run** section, click **Run**.

Create a Code File for the Simple Programmatic GUI

Create a function file (as opposed to a *script file*, which contains a sequence of MATLAB commands but does not define functions).

- 1 At the MATLAB prompt, type edit.
- **2** Type the following statement in the first line of the Editor.

```
function simple gui2
```

3 Following the function statement, type these comments, ending with a blank line. (The comments display at the command line in response to the help command.)

```
% SIMPLE_GUI2 Select a data set from the pop-up menu, then % click one of the plot-type push buttons. Clicking the button % plots the selected data in the axes. (Leave a blank line here)
```

4 At the end of the file, after the blank line, add an **end** statement.

Note You need the end statement to specify the end of the function because the example uses nested functions. To learn more, see "Nested Functions".

5 Save the file in your current folder or at a location that is on your MATLAB path.

Create a Figure for the Simple Programmatic GUI

Add the following lines before the end statement in your file to create a figure and position it on the screen. (In MATLAB software, a GUI is a figure.)

```
% Create and then hide the GUI as it is being constructed.
f = figure('Visible','off','Position',[360,500,450,285]);
```

The call to the figure function uses two property/value pairs:

• The Visible property makes the GUI invisible so that the GUI user cannot see the components being added or initialized.

When the GUI has all its components and is initialized, the example makes it visible.

• The Position property is a four-element vector that specifies the location of the GUI on the screen and its size: [distance from left, distance from bottom, width, height]. Default units are pixels.

Add Components to the Simple Programmatic GUI

Create the push buttons, static text, pop-up menu, and axes components to the GUI.

1 Following the call to figure, add these statements to your code file to create three push button components.

Each statement uses a series of uicontrol property/value pairs to define a push button:

- The Style property specifies that the uicontrol is a push button.
- The String property specifies the label on each push button: Surf, Mesh, and Contour.
- The Position property specifies the location of each push button within the GUI and its size: [distance from left, distance from bottom, width, height]. Default units for push buttons are pixels.

Each uicontrol call returns the handle of the push button created.

2 Add the pop-up menu and its static text label to your GUI by adding these statements to the code file following the push button definitions. The first statement creates a popup menu and the second statement creates a text component that serves as a label for the popup menu.

The pop-up menu component String property uses a cell array to specify the three items in the pop-up menu: Peaks, Membrane, and Sinc.

The text component, the String property specifies instructions for the GUI user.

For both components, the Position property specifies the location of each component within the GUI and its size: [distance from left, distance from bottom, width, height]. Default units for these components are pixels.

3 Add the axes to the GUI by adding this statement to the code file.

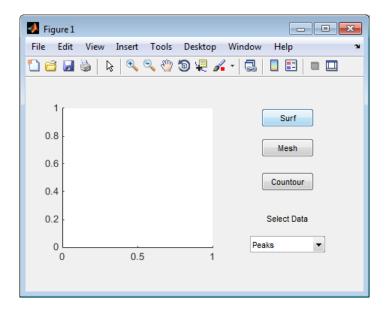
```
ha = axes('Units','pixels','Position',[50,60,200,185]);
```

The Units property specifies pixels so that the axes has the same units as the other components.

4 Following all the component definitions, add this line to the code file to align all components, except the axes, along their centers.

```
align([hsurf,hmesh,hcontour,htext,hpopup],'Center','None');
```

5 Add this command following the align command.


%Make the GUI visible. f.Visible = 'on';

```
Your code file should look like this:
function simple gui2
% SIMPLE GUI2 Select a data set from the pop-up menu, then
% click one of the plot-type push buttons. Clicking the button
% plots the selected data in the axes.
   % Create and then hide the GUI as it is being constructed.
   f = figure('Visible', 'off', 'Position', [360,500,450,285]);
   % Construct the components.
   hsurf = uicontrol('Style', 'pushbutton', 'String', 'Surf',...
           'Position',[315,220,70,25]);
   hmesh = uicontrol('Style','pushbutton','String','Mesh',...
           'Position',[315,180,70,25]);
   hcontour = uicontrol('Style','pushbutton',...
           'String','Countour',...
           'Position',[315,135,70,25]);
   htext = uicontrol('Style','text','String','Select Data',...
           'Position',[325,90,60,15]);
   hpopup = uicontrol('Style', 'popupmenu',...
           'String',{'Peaks','Membrane','Sinc'},...
           'Position',[300,50,100,25]);
   ha = axes('Units','Pixels','Position',[50,60,200,185]);
```

```
align([hsurf,hmesh,hcontour,htext,hpopup],'Center','None');
%Make the GUI visible.
f.Visible = 'on';
```

end

6 Run your code by typing simple_gui2 at the command line. You can select a data set in the pop-up menu and click the push buttons, but nothing happens. This is because there is no callback code in the file to service the pop-up menu or the buttons.

Code the Simple Programmatic GUI Behavior

Program the Pop-Up Menu

The pop-up menu enables users to select the data to plot. When a GUI user selects one of the three data sets in the pop-up menu, MATLAB software sets the pop-up menu Value property to the index of the selected string. The pop-up menu callback reads the pop-up menu Value property to determine which item is currently displayed and sets current_data accordingly.

Add the following callback to your file following the initialization code and before the final end statement.

```
Pop-up menu callback. Read the pop-up menu Value property to
% determine which item is currently displayed and make it the
% current data. This callback automatically has access to
% current data because this function is nested at a lower level.
  function popup menu Callback(source, eventdata)
      % Determine the selected data set.
      str = source.String;
      val = source.Value;
      % Set current data to the selected data set.
      switch str{val};
      case 'Peaks' % User selects Peaks.
        current data = peaks data;
      case 'Membrane' % User selects Membrane.
        current data = membrane data;
      case 'Sinc' % User selects Sinc.
        current data = sinc data;
      end
   end
```

Program the Push Buttons

Each of the three push buttons creates a different type of plot using the data specified by the current selection in the pop-up menu. The push button callbacks plot the data in current_data. They automatically have access to current_data because they are nested at a lower level.

Add the following callbacks to your file following the pop-up menu callback and before the final **end** statement.

end

Program the Callbacks

When the GUI user selects a data set from the pop-up menu or clicks one of the push buttons, MATLAB software executes the callback associated with that particular event. Use each component's Callback property to specify the name of the callback with which each event is associated.

1 To the uicontrol statement that defines the **Surf** push button, add the property/value pair

Callback is the name of the property. surfbutton_Callback is the name of the callback that services the **Surf** push button.

2 To the uicontrol statement that defines the **Mesh** push button, add the property/value pair

```
'Callback',@meshbutton Callback
```

3 To the uicontrol statement that defines the **Contour** push button, add the property/value pair

```
'Callback',@contourbutton Callback
```

4 To the uicontrol statement that defines the pop-up menu, add the property/value pair

```
'Callback',@popup menu Callback
```

For more information, see "Write Callbacks Using the Programmatic Workflow" on page 11-5.

Initialize the Simple Programmatic GUI

Initialize the GUI, so it is ready for the user when the code makes the GUI visible. Make the GUI behave properly when it is resized by changing the component and figure units to normalized. This causes the components to resize when the GUI is resized.

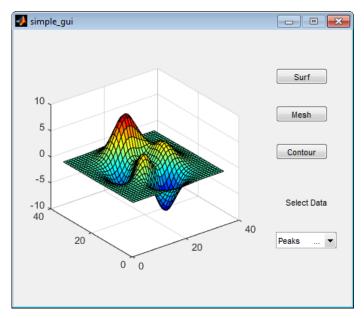
Normalized units map the lower-left corner of the figure window to (0,0) and the upper-right corner to (1.0, 1.0).

```
Replace this code in editor:
% Make the GUI visible.
f.Visible = 'on';
with this code:
% Initialize the GUI.
% Change units to normalized so components resize automatically.
set([f,hsurf,hmesh,hcontour,htext,hpopup],'Units','normalized');
% Generate the data to plot.
peaks data = peaks(35);
membrane data = membrane;
[x,y] = meshgrid(-8:.5:8);
r = sqrt(x.^2+y.^2) + eps;
sinc data = sin(r)./r;
% Create a plot in the axes.
current data = peaks data;
surf(current data);
% Assign the GUI a name to appear in the window title.
f.Name = 'Simple GUI';
% Move the GUI to the center of the screen.
movegui(f,'center')
% Make the GUI visible.
```

Verify Code and Run the Simple Programmatic GUI

Make sure your code appears as it should, and then run it.

1 Verify that your code file looks like this:


f.Visible = 'on';

```
function simple_gui2
% SIMPLE_GUI2 Select a data set from the pop-up menu, then
% click one of the plot-type push buttons. Clicking the button
% plots the selected data in the axes.
```

```
% Create and then hide the GUI as it is being constructed.
f = figure('Visible', 'off', 'Position', [360,500,450,285]);
% Construct the components.
         = uicontrol('Style','pushbutton',...
hsurf
             'String', 'Surf', 'Position', [315,220,70,25],...
             'Callback',@surfbutton Callback);
         = uicontrol('Style', 'pushbutton',...
hmesh
             'String', 'Mesh', 'Position', [315, 180, 70, 25],...
             'Callback', @meshbutton Callback);
hcontour = uicontrol('Style', 'pushbutton',...
             'String', 'Countour', 'Position', [315, 135, 70, 25],...
             'Callback',@contourbutton Callback);
htext = uicontrol('Style','text','String','Select Data',...
           'Position',[325,90,60,15]);
hpopup = uicontrol('Style','popupmenu',...
           'String', { 'Peaks', 'Membrane', 'Sinc'},...
           'Position',[300,50,100,25],...
           'Callback',@popup menu Callback);
ha = axes('Units','pixels','Position',[50,60,200,185]);
align([hsurf,hmesh,hcontour,htext,hpopup],'Center','None');
% Initialize the GUI.
% Change units to normalized so components resize automatically.
f.Units = 'normalized';
hsurf.Units = 'normalized';
hmesh.Units = 'normalized';
hcontour.Units = 'normalized';
htext.Units = 'normalized';
hpopup.Units = 'normalized';
% Generate the data to plot.
peaks data = peaks(35);
membrane data = membrane;
[x,y] = meshgrid(-8:.5:8);
r = sqrt(x.^2+y.^2) + eps;
sinc data = sin(r)./r;
% Create a plot in the axes.
current data = peaks data;
surf(current data);
% Assign the GUI a name to appear in the window title.
f.Name = 'Simple GUI';
```

```
% Move the GUI to the center of the screen.
movegui(f, 'center')
% Make the GUI visible.
f.Visible = 'on';
% Pop-up menu callback. Read the pop-up menu Value property to
% determine which item is currently displayed and make it the
% current data. This callback automatically has access to
% current data because this function is nested at a lower level.
  function popup menu Callback(source, eventdata)
      % Determine the selected data set.
      str = get(source, 'String');
      val = get(source, 'Value');
      % Set current data to the selected data set.
      switch str{val};
      case 'Peaks' % User selects Peaks.
         current data = peaks data;
      case 'Membrane' % User selects Membrane.
         current data = membrane data;
      case 'Sinc' % User selects Sinc.
         current data = sinc data;
      end
   end
 % Push button callbacks. Each callback plots current data in the
 % specified plot type.
 function surfbutton Callback(source, eventdata)
  % Display surf plot of the currently selected data.
       surf(current data);
  end
 function meshbutton Callback(source, eventdata)
 % Display mesh plot of the currently selected data.
       mesh(current data);
  end
 function contourbutton Callback(source, eventdata)
  % Display contour plot of the currently selected data.
       contour(current data);
 end
end
```

Run your code by typing simple_gui2 at the command line. The initialization code causes it to display the default peaks data with the surf function, making the GUI look like this.

- **3** In the pop-up menu, select **Membrane**, and then click the **Mesh** button. The GUI displays a mesh plot of the MathWorks L-shaped Membrane logo.
- **4** Try other combinations before closing the GUI.

plots the selected data in the axes.

5 Type help simple_gui2 at the command line. MATLAB software displays the help text.

```
help simple_gui2
SIMPLE_GUI2 Select a data set from the pop-up menu, then
click one of the plot-type push buttons. Clicking the button
```

Create GUIs with GUIDE

What Is GUIDE?

- "GUIDE: Getting Started" on page 4-2
- "GUIDE Tools Summary" on page 4-3

GUIDE: Getting Started

In this section...

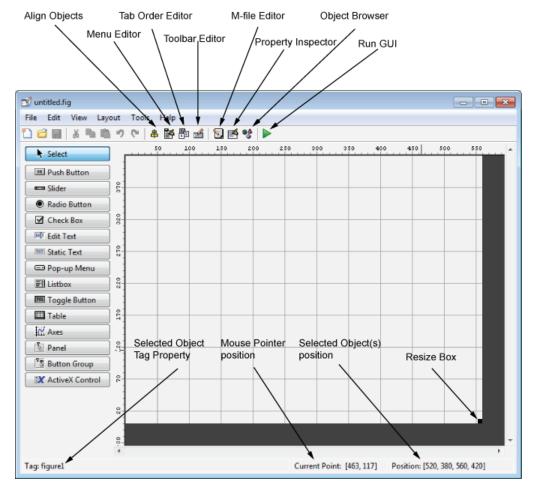
"GUI Layout" on page 4-2

"GUI Programming" on page 4-2

GUI Layout

GUIDE, the MATLAB graphical user interface development environment, provides a set of tools for creating graphical user interfaces (GUIs). These tools simplify the process of laying out and programming GUIs.

Using the GUIDE Layout Editor, you can populate a GUI by clicking and dragging GUI components—such as axes, panels, buttons, text fields, sliders, and so on—into the layout area. You also can create menus and context menus for the GUI. From the Layout Editor, you can size the GUI, modify component look and feel, align components, set tab order, view a hierarchical list of the component objects, and set GUI options.


GUI Programming

GUIDE automatically generates a program file containing MATLAB functions that controls how the GUI operates. This code file provides code to initialize the GUI and contains a framework for the GUI callbacks—the routines that execute when a user interacts with a GUI component. Use the MATLAB Editor to add code to the callbacks to perform the actions you want the GUI to perform.

Note MATLAB software provides a selection of standard dialog boxes that you can create with a single function call. For an example, see the documentation for msgbox, which also provides links to functions that create specialized predefined dialog boxes.

GUIDE Tools Summary

The GUIDE tools are available from the Layout Editor shown in the figure below. The tools are called out in the figure and described briefly below. Subsequent sections show you how to use them.

Use This Tool	То
Layout Editor	Select components from the component palette, at the left side of
	the Layout Editor, and arrange them in the layout area. See "Add

Use This Tool	То
	Components to the GUIDE Layout Area" on page 6-17 for more information.
Figure Resize Tab	Set the size at which the GUI is initially displayed when you run it. See "Set the GUIDE GUI Size" on page 6-11 for more information.
Menu Editor	Create menus and context, i.e., pop-up, menus. See "Create Menus for GUIDE GUIS" on page 6-91 for more information.
Align Objects	Align and distribute groups of components. Grids and rulers also enable you to align components on a grid with an optional snap-to-grid capability. See "Align GUIDE GUI Components" on page 6-79 for more information.
Tab Order Editor	Set the tab and stacking order of the components in your layout. See "Customize Tabbing Behavior in a GUIDE GUI" on page 6-88 for more information.
Toolbar Editor	Create Toolbars containing predefined and custom push buttons and toggle buttons. See "Create Toolbars for GUIDE GUIS" on page 6-108 for more information.
Icon Editor	Create and modify icons for tools in a toolbar. See "Create Toolbars for GUIDE GUIS" on page 6-108 for more information.
Property Inspector	Set the properties of the components in your layout. It provides a list of all the properties you can set and displays their current values.
Object Browser	Display a hierarchical list of the objects in the GUI. See "View the GUIDE GUI Object Hierarchy" on page 6-119 for more information.
Run	Save and run the current GUI.
Editor	Display, in your default editor, the code file associated with the GUI. See "Files Generated by GUIDE" on page 2-24 for more information.
Position Readouts	Continuously display the mouse cursor position and the positions of selected objects

GUIDE Preferences and Options

- "GUIDE Preferences" on page 5-2
- "GUIDE Options" on page 5-8

GUIDE Preferences

In this section...

"Set Preferences" on page 5-2

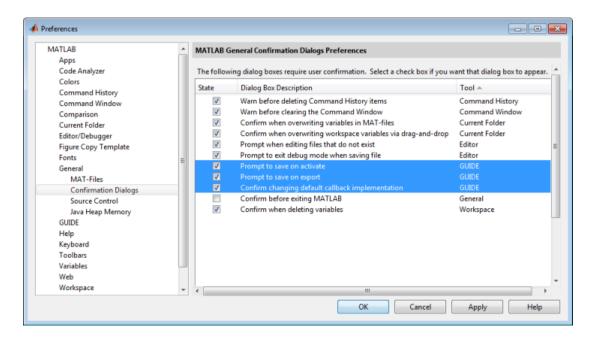
"Confirmation Preferences" on page 5-2

"Backward Compatibility Preference" on page 5-4

"All Other Preferences" on page 5-4

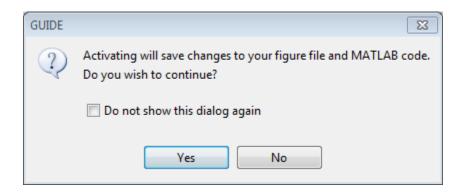
Set Preferences

You can set preferences for GUIDE. From the MATLAB **Home** tab, in the **Environment** section, click **Preferences**. These preferences apply to GUIDE and to all GUIs you create.

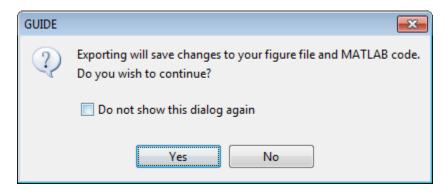

The preferences are in different locations within the Preferences dialog box:

Confirmation Preferences

GUIDE provides two confirmation preferences. You can choose whether you want to display a confirmation dialog box when you


- Activate a GUI from GUIDE.
- Export a GUI from GUIDE.
- Change a callback signature generated by GUIDE.

In the Preferences dialog box, click MATLAB > General > Confirmation Dialogs to access the GUIDE confirmation preferences. Look for the word GUIDE in the Tool column.


Prompt to Save on Activate

When you activate a GUI from the Layout Editor by clicking the **Run** button , a dialog box informs you of the impending save and lets you choose whether or not you want to continue.

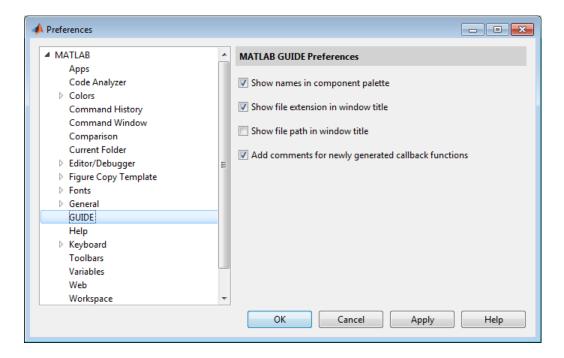
Prompt to Save on Export

From the Layout Editor, when you select **File > Export**, a dialog box informs you of the impending save and lets you choose whether or not you want to continue.

For more information on exporting a GUI, see "Create a Programmatic GUI Code File from GUIDE GUI Files" on page 7-4.

Backward Compatibility Preference

MATLAB Version 5 or Later Compatibility

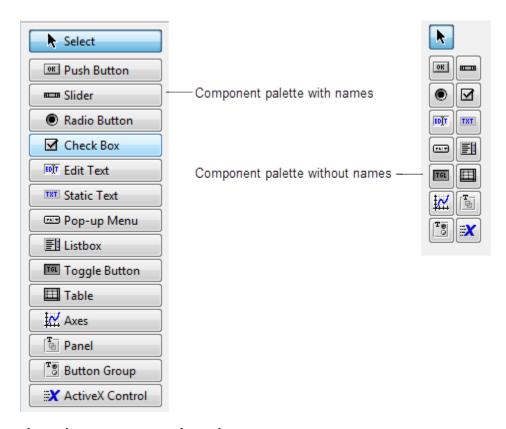

GUI FIG-files created or modified with MATLAB 7.0 or a later version are not automatically compatible with Version 6.5 and earlier versions. GUIDE automatically generates FIG-files, which are a kind of MAT-file, to hold layout information for GUIs.

To make a FIG-file backward compatible, from the Layout Editor, select File > Preferences > General > MAT-Files, and then select MATLAB Version 5 or later (save -v6).

Note: The **-v6** option discussed in this section is obsolete and will be removed in a future version of MATLAB.

All Other Preferences

GUIDE provides other preferences, for the Layout Editor interface and for inserting code comments. In the Preferences dialog box, click **GUIDE** to access these preferences.



The following topics describe the preferences in this dialog:

- "Show Names in Component Palette" on page 5-5
- "Show File Extension in Window Title" on page 5-6
- "Show File Path in Window Title" on page 5-6
- "Add Comments for Newly Generated Callback Functions" on page 5-6

Show Names in Component Palette

Displays both icons and names in the component palette, as shown below. When unchecked, the icons alone are displayed in two columns, with tooltips.

Show File Extension in Window Title

Displays the GUI FIG-file file name with its file extension, .fig, in the Layout Editor window title. If unchecked, only the file name is displayed.

Show File Path in Window Title

Displays the full file path in the Layout Editor window title. If unchecked, the file path is not displayed.

Add Comments for Newly Generated Callback Functions

Callbacks are blocks of code that execute in response to actions by the GUI's user, such as clicking buttons or manipulating sliders. By default, GUIDE sets up templates that declare callbacks as functions and adds comments at the beginning of each one. Most of the comments are similar to the following.

```
% --- Executes during object deletion, before destroying properties.
function figure1_DeleteFcn(hObject, eventdata, handles)
% hObject handle to figure1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
```

Some callbacks are added automatically because their associated components are part of the original GUIDE template that you chose. Other commonly used callbacks are added automatically when you add components. You can also add callbacks explicitly by selecting them from View > View Callbacks menu or on the component's context menu.

If you deselect this preference, GUIDE includes comments only for callbacks that are automatically included to support the original GUIDE template. GUIDE does not include comments for callbacks subsequently added to the code.

See "Write Callbacks Using the GUIDE Workflow" for more information about callbacks and about the arguments described in the preceding comments.

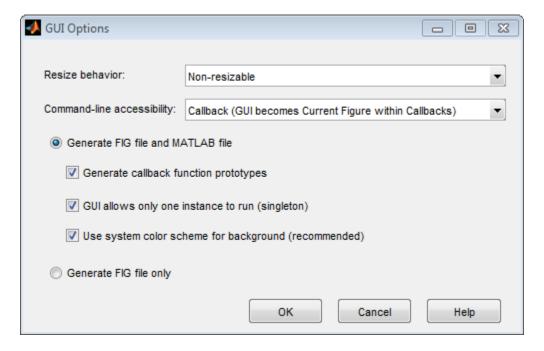
GUIDE Options

```
In this section...

"The GUI Options Dialog Box" on page 5-8

"Resize Behavior" on page 5-9

"Command-Line Accessibility" on page 5-9


"Generate FIG-File and MATLAB File" on page 5-10

"Generate FIG-File Only" on page 5-12
```

The GUI Options Dialog Box

You can use the GUI Options dialog box to configure various behaviors that are specific to the GUIDE GUI you are creating. These options take effect when you next save the GUI.

Access the dialog box from the GUIDE Layout Editor by selecting **Tools** > **GUI Options**.

Resize Behavior

You can control whether users can resize the figure window containing your GUI and how MATLAB handles resizing. GUIDE provides three options:

- Non-resizable Users cannot change the window size (default).
- **Proportional** The software automatically rescales the components in the GUI in proportion to the new figure window size.
- Other (Use SizeChangedFcn) Program the GUI to behave in a certain way when users resize the figure window.

The first two options set figure and component properties appropriately and require no other action. **Other (Use SizeChangedFcn)** requires you to write a callback routine that recalculates sizes and positions of the components based on the new figure size. For a discussion and examples of using a SizeChangedFcn, see the GUIDE examples "Panel" on page 8-21 and "GUI For Managing Persistent Data" on page 9-7.

Command-Line Accessibility

You can restrict access to a GUI figure from the command line or from a code file with the GUIDE **Command-line accessibility** options.

Unless you explicitly specify a figure handle, many commands, such as plot, alter the current figure (the figure specified by the root CurrentFigure property and returned by the gcf command). The current figure is usually the figure that is most recently created, drawn into, or mouse-clicked. You can programmatically designate a figure h (where h is its handle) as the current figure in four ways:

- 1 set(groot, 'CurrentFigure',h) Makes figure h current, but does not change its visibility or stacking with respect to other figures
- 2 figure(h) Makes figure h current, visible, and displayed on top of other figures
- **3** axes(h) Makes existing axes h the current axes and displays the figure containing it on top of other figures
- 4 plot(h,...), or any plotting function that takes an axes as its first argument, also makes existing axes h the current axes and displays the figure containing it on top of other figures

The gcf function returns the handle of the current figure.

h = gcf

For a GUI created in GUIDE, set the **Command-line accessibility** option to prevent users from inadvertently changing the appearance or content of a GUI by executing commands at the command line or from a script or function, such as plot. The following table briefly describes the four options for **Command-line accessibility**.

Option	Description
Callback (GUI becomes Current Figure within Callbacks)	The GUI can be accessed only from within a GUI callback. The GUI cannot be accessed from the command line or from a script. This is the default.
Off (GUI never becomes Current Figure)	The GUI can not be accessed from a callback, the command line, or a script, without the handle.
On (GUI may become Current Figure from Command Line)	The GUI can be accessed from a callback, from the command line, and from a script.
Other (Use settings from Property Inspector)	You control accessibility by setting the HandleVisibility and IntegerHandle properties from the Property Inspector.

Generate FIG-File and MATLAB File

Select **Generate FIG-file and MATLAB file** in the **GUI Options** dialog box if you want GUIDE to create both the FIG-file and the GUI code file (this is the default). Once you have selected this option, you can select any of the following items in the frame to configure GUI code:

- "Generate Callback Function Prototypes" on page 5-10
- "GUI Allows Only One Instance to Run (Singleton)" on page 5-11
- "Use System Color Scheme for Background" on page 5-11

See "Files Generated by GUIDE" on page 2-24 for information about these files.

Generate Callback Function Prototypes

If you select **Generate callback function prototypes** in the **GUI Options** dialog, GUIDE adds templates for the most commonly used callbacks to the GUI code for most components you add to the GUI. You must then write the code for these callbacks.

GUIDE also adds a callback whenever you edit a callback routine from the Layout Editor's right-click context menu and when you add menus to the GUI using the Menu Editor.

See "Write Callbacks Using the GUIDE Workflow" for general information about callbacks.

Note This option is available only if you first select the **Generate FIG-file and MATLAB file** option.

GUI Allows Only One Instance to Run (Singleton)

This option allows you to select between two behaviors for the GUI figure:

- Allow MATLAB software to display only one instance of the GUI at a time.
- Allow MATLAB software to display multiple instances of the GUI.

If you allow only one instance, the software reuses the existing GUI figure whenever the command to run the GUI is issued. If a GUI already exists, the software brings it to the foreground rather than creating a new figure.

If you clear this option, the software creates a new GUI figure whenever you issue the command to run the GUI.

Even if you allow only one instance of a GUI to run at once, initialization can take place each time you invoke it from the command line. For example, the code in an <code>OpeningFcn</code> will run each time a GUIDE GUI runs unless you take steps to prevent it from doing so. Adding a flag to the <code>handles</code> structure is one way to control such behavior. You can do this in the <code>OpeningFcn</code>, which can run initialization code if this flag doesn't yet exist and skip that code if it does.

Note This option is available only if you first select the **Generate FIG-file and MATLAB file** option.

Use System Color Scheme for Background

The default color used for GUI components is system dependent. This option enables you to make the figure background color the same as the default component background color.

To ensure that the figure background matches the color of the components, select **Use** system color scheme for background in the GUI Options dialog.

Note This option is available only if you first select the **Generate FIG-file and MATLAB file** option.

Generate FIG-File Only

The **Generate FIG-file only** option enables you to open figures and GUIs to perform limited editing. These can be any figures and need not be GUIs. GUIs need not have been generated using GUIDE. This mode provides limited editing capability and may be useful for GUIs generated in MATLAB Versions 5.3 and earlier. See the guide function for more information.

GUIDE selects Generate FIG-file only as the default if you do one of the following:

 Start GUIDE from the command line by providing one or more figure handles as arguments.

```
guide(fh)
```

In this case, GUIDE selects **Generate FIG-file only**, even when a code file with a corresponding name exists in the same folder.

• Start GUIDE from the command line and provide the name of a FIG-file for which no code file with the same name exists in the same folder.

```
guide('myfig.fig')
```

• Use the GUIDE **Open Existing GUI** tab to open a FIG-file for which no code file with the same name exists in the same folder.

When you save the figure or GUI with **Generate FIG-file only** selected, GUIDE saves only the FIG-file. You must update any corresponding code files yourself, as appropriate.

If you want GUIDE to manage the GUI code file for you, change the selection to **Generate FIG-file and MATLAB file** before saving the GUI. If there is no corresponding code file in the same location, GUIDE creates one. If a code file with the same name as the original figure or GUI exists in the same folder, GUIDE overwrites it. To prevent overwriting an existing file, save the GUI using **Save As** from the **File** menu. Select another file name for the two files. GUIDE updates variable names in the new code file as appropriate.

Callbacks for GUIs without Code

Even when there is no code file associated with a GUI FIG-file, you can still provide callbacks for GUI components to make them perform actions when used. In the Property Inspector, you can type callbacks in the form of strings, built-in functions, or MATLAB code file names; when the GUI runs, it will execute them if possible. If the callback is a file name, it can include arguments to that function. For example, setting the Callback property of a push button to sqrt(2) causes the result of the expression to display in the Command Window:

ans = 1.4142

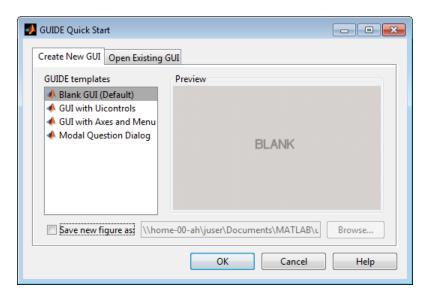
Any file that a callback executes must be in the current folder or on the MATLAB path. For more information on how callbacks work, see "Write Callbacks Using the GUIDE Workflow" on page 8-2

Lay Out a GUIDE GUI

- "GUIDE Templates" on page 6-2
- "Set the GUIDE GUI Size" on page 6-11
- "GUIDE Components" on page 6-13
- "Add Components to the GUIDE Layout Area" on page 6-17
- "Copy, Paste, and Arrange Components" on page 6-70
- "Locate and Move Components" on page 6-74
- "Align GUIDE GUI Components" on page 6-79
- "Customize Tabbing Behavior in a GUIDE GUI" on page 6-88
- "Create Menus for GUIDE GUIs" on page 6-91
- "Create Toolbars for GUIDE GUIs" on page 6-108
- "View the GUIDE GUI Object Hierarchy" on page 6-119
- "Design GUIDE GUIs for Cross-Platform Compatibility" on page 6-120
- "GUI Design References" on page 6-123

GUIDE Templates

In this section... "Access the Templates" on page 6-2 "Template Descriptions" on page 6-3


Access the Templates

GUIDE provides several templates that you can modify to create your own GUIs. The templates are fully functional GUIs; they are already programmed.

You can access the templates in two ways:

- From the MATLAB toolstrip, on the HOME tab, in the FILE section, selectNew > Graphical User Interface
- If the Layout Editor is already open, select **File > New**.

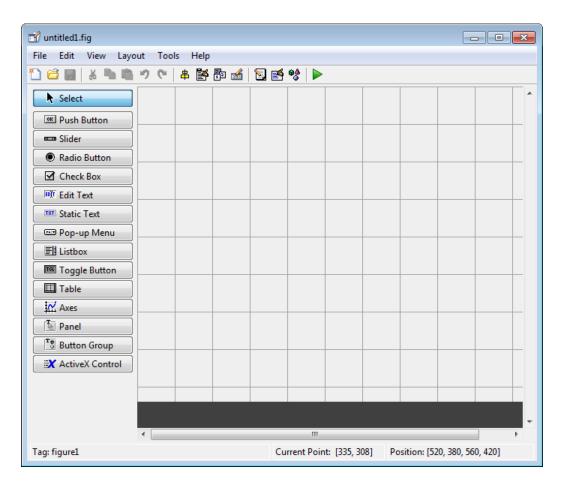
In either case, GUIDE displays the **GUIDE Quick Start** dialog box with the **Create New GUI** tab selected as shown in the following figure. This tab contains a list of the available templates.

To use a template:

- 1 Select a template in the left pane. A preview displays in the right pane.
- 2 Optionally, name your GUI now by selecting **Save new figure as** and typing the name in the field to the right. GUIDE saves the GUI before opening it in the Layout Editor. If you choose not to name the GUI at this point, GUIDE prompts you to save it and give it a name the first time you run the GUI.
- **3** Click **OK** to open the GUI template in the Layout Editor.

Template Descriptions

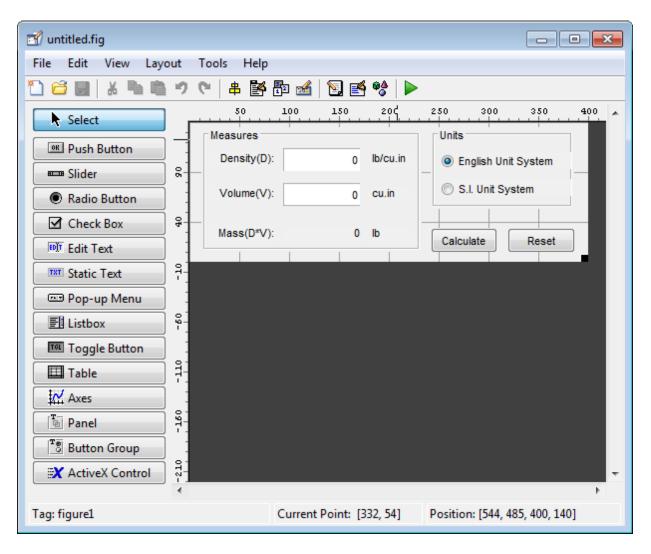
GUIDE provides four fully functional templates. They are described in the following sections:

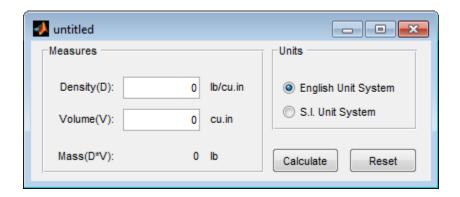

- "Blank GUI" on page 6-3
- "GUI with Uicontrols" on page 6-4
- "GUI with Axes and Menu" on page 6-6
- "Modal Question Dialog" on page 6-8

"Out of the box," none of the GUI templates include a menu bar or a toolbar. Neither can they dock in the MATLAB desktop. You can, however, override these GUIDE defaults to provide and customize these controls. See the sections "Create Menus for GUIDE GUIS" on page 6-91 and "Create Toolbars for GUIDE GUIS" on page 6-108 for details.

Note To see how the template GUIs work, you can view their code and look at their callbacks. You can also modify the callbacks for your own purposes. To view the code file for any of these templates, open the template in the Layout Editor and click the **Editor** button on the toolbar.

Blank GUI

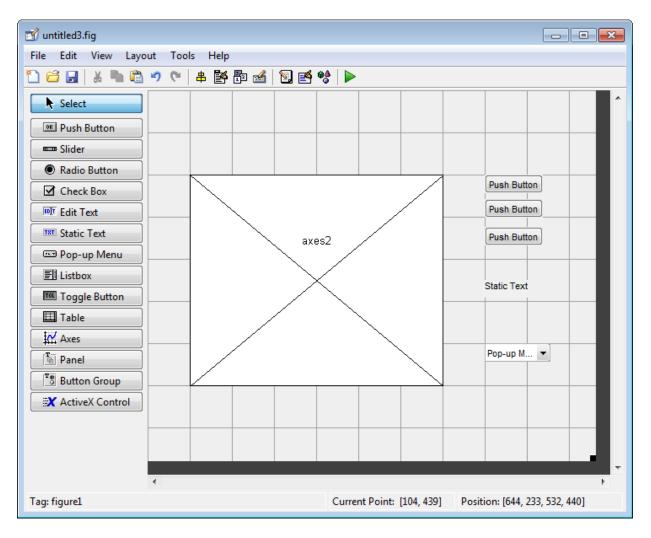

The blank GUI template displayed in the Layout Editor is shown in the following figure.


Select the blank GUI if the other templates are not suitable starting points for the GUI you are creating, or if you prefer to start with an empty GUI.

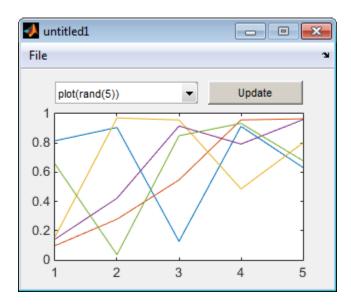
GUI with Uicontrols

The following figure shows the template for a GUI with user interface controls (uicontrols) displayed in the Layout Editor. User interface controls include push buttons, sliders, radio buttons, check boxes, editable and static text components, list boxes, and toggle buttons.

When you run the GUI by clicking the \mathbf{Run} button \blacksquare , the GUI appears as shown in the following figure.



When a user enters values for the density and volume of an object, and clicks the **Calculate** button, the GUI calculates the mass of the object and displays the result next to **Mass(D*V)**.

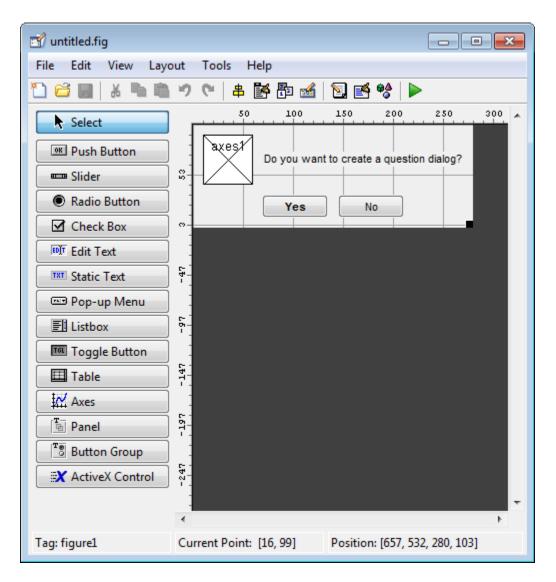

To view the code for these user interface controls, open the template in the Layout Editor and click the **Editor** button on the toolbar.

GUI with Axes and Menu

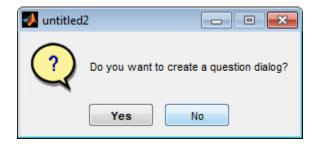
The template for a GUI with axes and menu is shown in the following figure.

When you run the GUI by clicking the **Run** button on the toolbar, the GUI displays a plot of five lines, each of which is generated from random numbers using the MATLAB rand(5) command. The following figure shows an example.

You can select other plots in the pop-up menu. Clicking the **Update** button displays the currently selected plot on the axes.


The GUI also has a **File** menu with three items:

- · Open displays a dialog box from which you can open files on your computer.
- **Print** opens the Print dialog box. Clicking **OK** in the Print dialog box prints the figure.
- · Close closes the GUI.

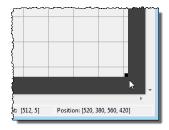

To view the code for these menu choices, open the template in the Layout Editor and click the **Editor** button on the toolbar.

Modal Question Dialog

The modal question dialog template displayed in the Layout Editor is shown in the following figure.

Running the GUI displays the dialog box shown in the following figure:

The GUI returns the text string Yes or No, depending on which button you click.


Select this template if you want your GUI to return a string or to be *modal*.

Modal GUIs are *blocking*, which means that the current code file stops executing until the GUI restores execution; this means that the user cannot interact with other MATLAB windows until one of the buttons is clicked.

To view the code for these capabilities, open the template in the Layout Editor and click the **Editor** button on the toolbar. See "Modal Dialog Box in a GUIDE GUI" on page 9-2 for an example of using this template with another GUI. Also see the figure WindowStyle property for more information.

Set the GUIDE GUI Size

Set the size of the GUI by resizing the grid area in the Layout Editor. Click the lower-right corner of the layout area and drag it until the GUI is the desired size. If necessary, make the window larger.

As you drag the corner handle, the readout in the lower right corner shows the current position of the GUI in pixels (regardless of the GUI Units property setting). Existing objects within the GUI resize with the GUI window if their Units are normalized.

Note Setting the Units property to characters (nonresizable GUIs) or normalized (resizable GUIs) gives the GUI a more consistent appearance across platforms. See "Cross-Platform Compatible Units" on page 6-121 for more information.

Prevent Existing Objects from Resizing with the GUI Window

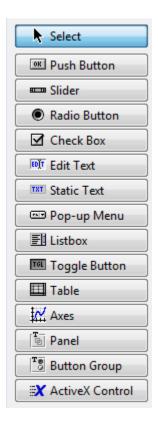
Existing objects within the GUI resize with the GUI window if their Units are normalized. To prevent them from resizing with the GUI window:

- 1 Set each object's Units property to an absolute value, such as inches or pixels before enlarging the GUI.
 - To change the Units property for all the objects in your GUI simultaneously, drag a selection box around all the objects, and then click the Property Inspector button and set the Units.
- **2** When you finish enlarging the GUI, set each object's Units property back to normalized.

Set the GUI Position or Size to an Exact Value

- In the Layout Editor, open the Property Inspector for the figure by clicking the button (with no components selected).
- 2 In the Property Inspector, scroll to the Units property and note whether the current setting is characters or normalized.
- 3 Click the down arrow at the far right in the Units row, and select inches.
- 4 In the Property Inspector, display the Position property elements by clicking the + sign to the left of Position.
- 5 Change the X and y coordinates to the point where you want the lower-left corner of the GUI to appear, and its width and height.
- **6** Reset the Units property to its previous setting, as noted in step 2.

Maximize the Layout Area


You can make maximum use of space within the Layout Editor by hiding the GUIDE toolbar and status bar, and showing only tool icons, as follows:

- 1 From the View menu, deselect Show Toolbar.
- 2 From the View menu, deselect Show Status Bar.
- 3 Select File > Preferences, and then clear Show names in component palette

GUIDE Components

The component palette at the left side of the Layout Editor contains the components that you can add to your GUI. You can display it with or without names.

The following image shows the component palette with names displayed.

When you first open the Layout Editor, the component palette contains only icons. To display the names of the GUI components, select **File > Preferences > GUIDE**, check the box next to **Show names in component palette**, and then click **OK**.

See also "Create Menus for GUIDE GUIs" on page 6-91 and "Create Toolbars for GUIDE GUIs" $\,$

Component	lcon	Description	
"Push Button" on page 6-25	OK	Push buttons generate an action when clicked. For example, an OK button might apply settings and close a dialog box. When you click a push button, it appears depressed; when you release the mouse button, the push button appears raised.	
"Slider" on page 6-27	BE-18	Sliders accept numeric input within a specified range by enabling the user to move a sliding bar, which is called a slider or thumb. Users move the slider by clicking the slider and dragging it, by clicking in the trough, or by clicking an arrow. The location of the slider indicates the relative location within the specified range.	
"Radio Button" on page 6-29	•	Radio buttons are similar to check boxes, but radio buttons are typically mutually exclusive within a group of related radio buttons. That is, when you select one button the previously selected button is deselected. To activate a radio button, click the mouse button on the object. The display indicates the state of the button. Use a button group to manage mutually exclusive radio buttons.	
"Check Box" on page 6-31	☑	Check boxes can generate an action when checked and indicate their state as checked or not checked. Check boxes are useful when providing the user with a number of independent choices, for example, displaying a toolbar.	
"Edit Text" on page 6-32	ED)T	Edit text components are fields that enable users to enter or modify text strings. Use edit text when you want text as input. Users can enter numbers but you must convert them to their numeric equivalents.	
"Static Text" on page 6-34	TRT	Static text controls display lines of text. Static text is typically used to label other controls, provide directions to the user, or indicate values associated with a slider. Users cannot change static text interactively.	
"Pop-Up Menu" on page 6-36		Pop-up menus open to display a list of choices when users click the arrow.	
"List Box" on page 6-38	副	List boxes display a list of items and enable users to select one or more items.	

Component	lcon	Description
"Toggle Button" on page 6-41	TEL	Toggle buttons generate an action and indicate whether they are turned on or off. When you click a toggle button, it appears depressed, showing that it is on. When you release the mouse button, the toggle button remains depressed until you click it a second time. When you do so, the button returns to the raised state, showing that it is off. Use a button group to manage mutually exclusive toggle buttons.
"Table" on page 6-54		Use the table button to create a table component. Refer to the uitable function for more information on using this component.
"Axes" on page 6-50	‡ ₩	Axes enable your GUI to display graphics such as graphs and images. Like all graphics objects, axes have properties that you can set to control many aspects of its behavior and appearance.
"Panel" on page 6-45	Tel	Panels arrange GUI components into groups. By visually grouping related controls, panels can make the user interface easier to understand. A panel can have a title and various borders.
		Panel children can be user interface controls and axes as well as button groups and other panels. The position of each component within a panel is interpreted relative to the panel. If you move the panel, its children move with it and maintain their positions on the panel.
"Button Group" on page 6-48	Te	Button groups are like panels but are used to manage exclusive selection behavior for radio buttons and toggle buttons.
"Create Toolbars for GUIDE GUIs" on page 6-108	3	You can create toolbars containing push buttons and toggle buttons. Use the GUIDE Toolbar Editor to create toolbar buttons. Choose between predefined buttons, such as Save and Print, and buttons that you customize with your own icons and callbacks.

Component	lcon	Description
"ActiveX Component" on page 6-65	*	ActiveX components enable you to display ActiveX controls in your GUI. They are available only on the Microsoft® Windows® platform. An ActiveX control can be the child only of a figure, i.e., of the GUI itself. It cannot be the child of a panel or button group.

Add Components to the GUIDE Layout Area

In this section...

"Place Components" on page 6-17

"User Interface Controls" on page 6-23

"Panels and Button Groups" on page 6-44

"Axes" on page 6-50

"Table" on page 6-54

"ActiveX Component" on page 6-65

"Resize GUIDE GUI Components" on page 6-67

Place Components

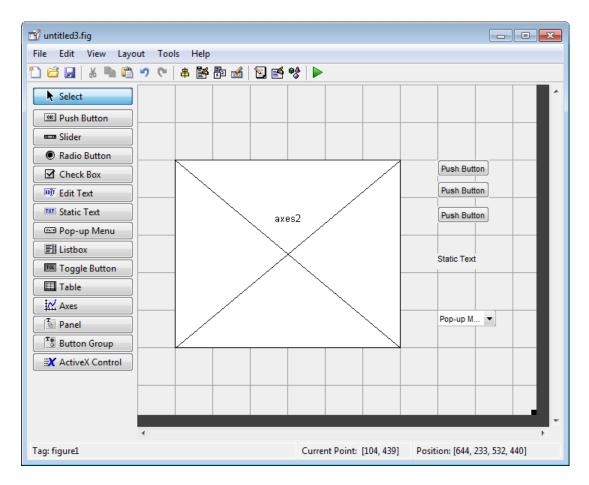
The component palette at the left side of the Layout Editor contains the components that you can add to your GUI.

Note See "Create Menus for GUIDE GUIS" on page 6-91 for information about adding menus to a GUI. See "Create Toolbars for GUIDE GUIS" on page 6-108 for information about working with the toolbar.

To place components in the GUIDE layout area and give each component a unique identifier, follow these steps:

- **1** Display component names on the palette.
 - a On the MATLAB Home tab, in the Environment section, click Preferences.
 - **b** In the Preferences dialog box, click **GUIDE**.
 - $\textbf{c} \quad \text{Select Show Names in Component Palette}, \text{ and then click } \textbf{OK} \; .$
- 2 Place components in the layout area according to your design.
 - Drag a component from the palette and drop it in the layout area.
 - Click a component in the palette and move the cursor over the layout area. The cursor changes to a cross. Click again to add the component in its default size, or click and drag to size the component as you add it.

Once you have defined a GUI component in the layout area, selecting it automatically shows it in the Property Inspector. If the Property Inspector is not open or is not visible, double-clicking a component raises the inspector and focuses it on that component.


The components listed in the following table have additional considerations; read more about them in the sections described there.

If You Are Adding	Then
Panels or button groups	See "Add a Component to a Panel or Button Group" on page 6-20.
Menus	See "Create Menus for GUIDE GUIs" on page 6-91
Toolbars	See "Create Toolbars for GUIDE GUIs" on page 6-108
ActiveX controls	See "ActiveX Component" on page 6-65.

See "Grid and Rulers" on page 6-85 for information about using the grid.

- **3** Assign a unique identifier to each component. Do this by setting the value of the component Tag properties. See"Assign an Identifier to Each Component" on page 6-23 for more information.
- **4** Specify the look and feel of each component by setting the appropriate properties. The following topics contain specific information.
 - "User Interface Controls" on page 6-23
 - "Panels and Button Groups" on page 6-44
 - "Axes" on page 6-50
 - · "Table" on page 6-54
 - "ActiveX Component" on page 6-65

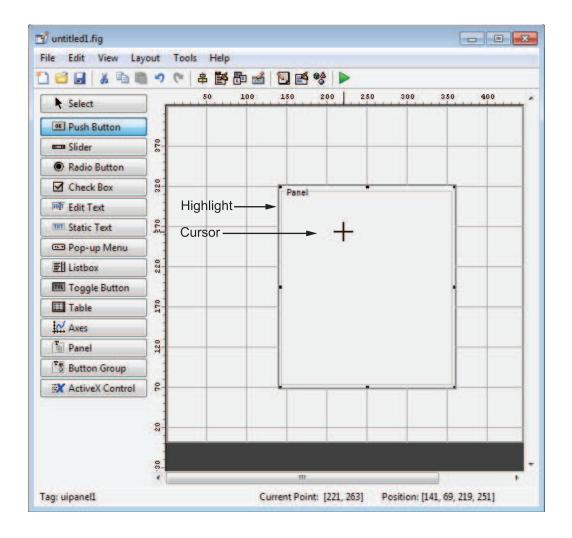
This is an example of a GUI in the Layout Editor. Components in the Layout Editor are not active.

Use Coordinates to Place Components

The status bar at the bottom of the GUIDE Layout Editor displays:

- Current Point The current location of the mouse relative to the lower left corner of the grid area in the Layout Editor.
- **Position** The **Position** property of the selected component, a 4-element vector: [distance from left, distance from bottom, width, height], where distances are relative to the parent figure, panel, or button group. All values are given in pixels. Rulers also display pixels.

6


If you select a single component and move it, the first two elements of the position vector (distance from left, distance from bottom) are updated as you move the component. If you resize the component, the last two elements of the position vector (width, height) are updated as you change the size. The first two elements may also change if you resize the component such that the position of its lower left corner changes. If no components are selected, the position vector is that of the figure.

For more information, see "Use Coordinate Readouts" on page 6-74.

Add a Component to a Panel or Button Group

To add a component to a panel or button group, select the component in the component palette then move the cursor over the desired panel or button group. The position of the cursor determines the component's parent.

GUIDE highlights the potential parent as shown in the following figure. The highlight indicates that if you drop the component or click the cursor, the component will be a child of the highlighted panel, button group, or figure.

Note Assign a unique identifier to each component in your panel or button group by setting the value of its Tag property. See "Assign an Identifier to Each Component" on page 6-23 for more information.

Include Existing Components in Panels and Button Groups

When you add a new component or drag an existing component to a panel or button group, it will become a member, or child, of the panel or button group automatically, whether fully or partially enclosed by it. However, if the component is not entirely contained in the panel or button group, it appears to be clipped in the Layout Editor. When you run the GUI, the entire component is displayed and straddles the panel or button group border. The component is nevertheless a child of the panel and behaves accordingly. You can use the Object Browser to determine the child objects of a panel or button group. "View the GUIDE GUI Object Hierarchy" on page 6-119 tells you how.

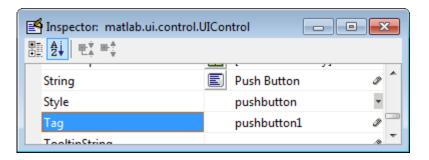
You can add a new panel or button group to a GUI in order to group any of its existing controls. In order to include such controls in a new panel or button group, do the following. The instructions refer to panels, but you do the same for components inside button groups.

- 1 Select the New Panel or New Button Group tool and drag out a rectangle to have the size and position you want.
 - The panel will not obscure any controls within its boundary unless they are axes, tables, or other panels or button groups. Only overlap panels you want to nest, and then make sure the overlap is complete.
- 2 You can use **Send Backward** or **Send to Back** on the **Layout** menu to layer the new panel behind components you do not want it to obscure, if your layout has this problem. As you add components to it or drag components into it, the panel will automatically layer itself behind them.
 - Now is a good time to set the panel's Tag and String properties to whatever you want them to be, using the Property Inspector.
- 3 Open the Object Browser from the **View** menu and find the panel you just added. Use this tool to verify that it contains all the controls you intend it to group together. If any are missing, perform the following steps.
- 4 Drag controls that you want to include but don't fit within the panel inside it to positions you want them to have. Also, slightly move controls that are already in their correct positions to group them with the panel.

The panel highlights when you move a control, indicating it now contains the control. The Object Browser updates to confirm the relationship. If you now move the panel, its child controls move with it.

Tip You need to move controls with the mouse to register them with the surrounding panel or button group, even if only by a pixel or two. Selecting them and using arrow keys to move them does not accomplish this. Use the Object Browser to verify that controls are properly nested.

See "Panels and Button Groups" on page 6-44 for more information on how to incorporate panels and button groups into a GUI.


Assign an Identifier to Each Component

Use the Tag property to assign each component a unique meaningful string identifier.

When you place a component in the layout area, GUIDE assigns a default value to the Tag property. Before saving the GUI, replace this value with a string that reflects the role of the component in the GUI.

The string value you assign Tag is used by code to identify the component and must be unique in the GUI. To set Tag:

- 1 Select View > Property Inspector or click the Property Inspector button .
- 2 In the layout area, select the component for which you want to set Tag.
- 3 In the Property Inspector, select Tag and then replace the value with the string you want to use as the identifier. In the following figure, Tag is set to mybutton.

User Interface Controls

User interface controls include push buttons, toggle buttons, sliders, radio buttons, edit text controls, static text controls, pop-up menus, check boxes, and list boxes.

To define user interface controls, you must set certain properties. To do this:

- Use the Property Inspector to modify the appropriate properties. Open the Property Inspector by selecting View > Property Inspector or by clicking the Property Inspector button
- 2 In the layout area, select the component you are defining.

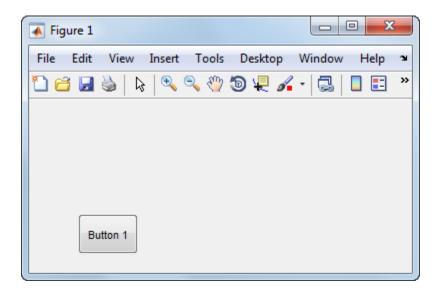
Subsequent topics describe commonly used properties of user interface controls and offer a simple example for each kind of control:

- "Commonly Used Properties" on page 6-24
- "Push Button" on page 6-25
- "Slider" on page 6-27
- "Radio Button" on page 6-29
- "Check Box" on page 6-31
- "Edit Text" on page 6-32
- "Static Text" on page 6-34
- "Pop-Up Menu" on page 6-36
- "List Box" on page 6-38
- "Toggle Button" on page 6-41

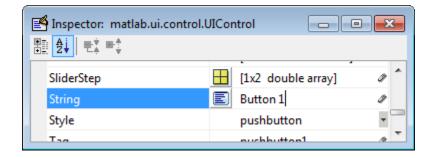
Note: See "GUIDE Components" on page 6-13 for descriptions of these components. See "Callbacks for Specific Components" on page 8-12 for basic examples of programming these components.

Commonly Used Properties

The most commonly used properties needed to describe a user interface control are shown in the following table. Instructions for a particular control may also list properties that are specific to that control.


Property	Value	Description
Enable	on, inactive, off. Default	
	is on.	control is available to the user

Property	Value	Description
Max	Scalar. Default is 1.	Maximum value. Interpretation depends on the type of component.
Min	Scalar. Default is 0.	Minimum value. Interpretation depends on the type of component.
Position	4-element vector: [distance from left, distance from bottom, width, height].	Size of the component and its location relative to its parent.
String	String. Can also be a cell array or character array of strings.	Component label. For list boxes and pop-up menus it is a list of the items.
Units	characters, centimeters, inches, normalized, pixels, points. Default is characters.	Units of measurement used to interpret the Position property vector
Value	Scalar or vector	Value of the component. Interpretation depends on the type of component.


For a complete list of properties and for more information about the properties listed in the table, see Uicontrol Properties.

Push Button

To create a push button with label Button 1, as shown in this figure:

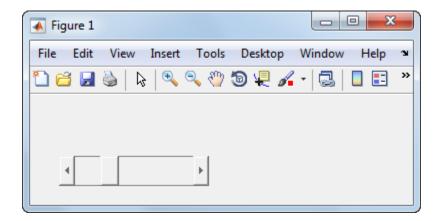
 Specify the push button label by setting the String property to the desired label, in this case, Button 1.

To display the & character in a label, use two & characters in the string. The words remove, default, and factory (case sensitive) are reserved. To use one of these as a label, prepend a backslash (\) to the string. For example, \remove yields remove.

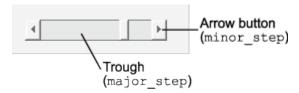
The push button accommodates only a single line of text. If you specify more than one line, only the first line is shown. If you create a push button that is too narrow to accommodate the specified String, MATLAB software truncates the string with an ellipsis.

- If you want to set the position or size of the component to an exact value, then modify its Position property. See "Locate and Move Components" on page 6-74 and "Resize GUIDE GUI Components" on page 6-67 for details.
- To add an image to a push button, assign the button's CData property as an mby-n-by-3 array of RGB values that defines a "truecolor image". You must do this programmatically in the opening function of the GUI code file. For example, the array img defines a 16-by-64-by-3 truecolor image using random values between 0 and 1 (generated by rand).

```
img = rand(16,64,3);
set(handles.pushbutton1,'CData',img);
```


where pushbutton1 is the push button's Tag property.

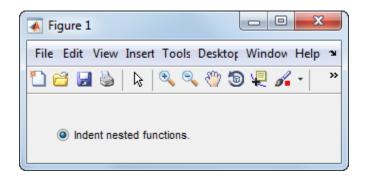
Note See ind2rgb for information on converting a matrix X and corresponding colormap, i.e., an (X, MAP) image, to RGB (truecolor) format.


Slider

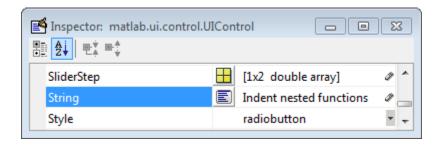
To create a slider as shown in this figure:

- Specify the range of the slider by setting its Min property to the minimum value of the slider and its Max property to the maximum value. The Min property must be less than Max.
- Specify the value indicated by the slider when it is created by setting the Value property to the appropriate number. This number must be less than or equal to Max and greater than or equal to Min. If you specify Value outside the specified range, the slider is not displayed.
- The slider Value changes by a small amount when a user clicks the arrow button, and changes by a larger amount when the user clicks the trough (also called the channel). Control how the slider responds to these actions by setting the SliderStep property. Specify SliderStep as a two-element vector, [minor_step major_step], where minor_step is less than or equal to major_step. Because specifying very small values can cause unpredictable slider behavior, make both minor_step and major_step greater than 1e-6. Set major_step to the proportion of the range that clicking the trough moves the slider thumb. Setting it to 1 or higher causes the thumb to move to Max or Min when the trough is clicked.

As major_step increases, the thumb grows longer. When major_step is 1, the thumb is half as long as the trough. When major_step is greater than 1, the thumb continues to grow, slowly approaching the full length of the trough. When a slider serves as a scroll bar, you can uses this behavior to indicate how much of the document is currently visible by changing the value of major_step.


• If you want to set the location or size of the component to an exact value, then modify its Position property. See "Locate and Move Components" on page 6-74 and "Resize GUIDE GUI Components" on page 6-67 for details.

The slider component provides no text description or data entry capability. Use a "Static Text" on page 6-34 component to label the slider. Use an "Edit Text" on page 6-32 component to enable a user to input a value to apply to the slider.


Note: On Mac platforms, the height of a horizontal slider is constrained. If the height you set in the position vector exceeds this constraint, the displayed height of the slider is the maximum allowed. The height element of the position vector is not changed.

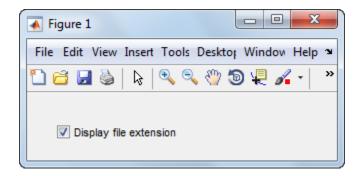
Radio Button

To create a radio button with label **Indent nested functions**, as shown in this figure:

• Specify the radio button label by setting the String property to the desired label, in this case, Indent nested functions.

To display the & character in a label, use two & characters in the string. The words remove, default, and factory (case sensitive) are reserved. To use one of these as a label, prepend a backslash (\) to the string. For example, \remove yields remove.

The radio button accommodates only a single line of text. If you specify more than one line, only the first line is shown. If you create a radio button that is too narrow to accommodate the specified **String**, MATLAB software truncates the string with an ellipsis.

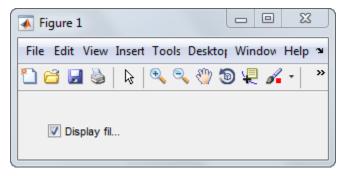

- Create the radio button with the button selected by setting its Value property to the value of its Max property (default is 1). Set Value to Min (default is 0) to leave the radio button unselected. Correspondingly, when the user selects the radio button, the software sets Value to Max, and to Min when the user deselects it.
- If you want to set the position or size of the component to an exact value, then modify its Position property. See "Locate and Move Components" on page 6-74 and "Resize GUIDE GUI Components" on page 6-67 for details.
- To add an image to a radio button, assign the button's CData property an m-by-n-by-3 array of RGB values that defines a "truecolor image". You must do this programmatically in the opening function of the GUI code file. For example, the array img defines a 16-by-24-by-3 truecolor image using random values between 0 and 1 (generated by rand).

```
img = rand(16,24,3);
set(handles.radiobutton1,'CData',img);
```

Note To manage exclusive selection of radio buttons and toggle buttons, put them in a button group. See "Button Group" on page 6-48 for more information.

Check Box

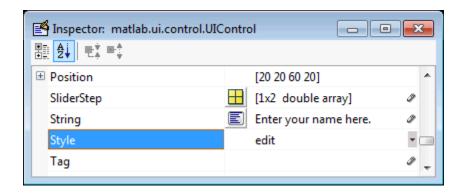
To create a check box with label **Display file extension** that is initially checked, as shown in this figure:



• Specify the check box label by setting the String property to the desired label, in this case, Display file extension.

To display the & character in a label, use two & characters in the string. The words remove, default, and factory (case sensitive) are reserved. To use one of these as a label, prepend a backslash (\) to the string. For example, \remove yields remove.

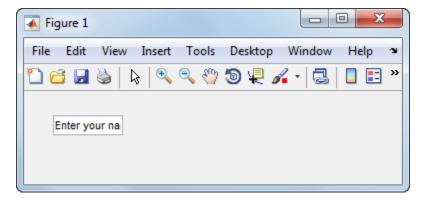
The check box accommodates only a single line of text. If you specify a component width that is too small to accommodate the specified String, MATLAB software truncates the string with an ellipsis.


- Create the check box with the box checked by setting the Value property to the value of the Max property (default is 1). Set Value to Min (default is 0) to leave the box unchecked. Correspondingly, when the user clicks the check box, the software sets Value to Max when the user checks the box and to Min when the user clears it.
- If you want to set the position or size of the component to an exact value, then modify its Position property. See "Locate and Move Components" on page 6-74 and "Resize GUIDE GUI Components" on page 6-67 for details.

Edit Text

To create an edit text component that displays the initial text **Enter your name here**, as shown in this figure:

• Specify the text to be displayed when the edit text component is created by setting the String property to the desired string, in this case, Enter your name here.

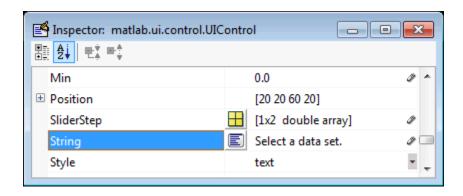


To display the & character in a label, use two & characters in the string. The words remove, default, and factory (case sensitive) are reserved. To use one of these as a label, prepend a backslash (\) to the string. For example, \remove yields remove.

• To enable multiple-line input, specify the Max and Min properties so that their difference is greater than 1. For example, Max = 2, Min = 0. Max default is 1, Min default is 0. MATLAB software wraps the string and adds a scroll bar if necessary. On all platforms, when the user enters a multiline text box via the **Tab** key, the editing cursor is placed at its previous location and no text highlights.

If Max-Min is less than or equal to 1, the edit text component admits only a single line of input. If you specify a component width that is too small to accommodate the specified string, MATLAB software displays only part of the string. The user can use the arrow keys to move the cursor through the entire string. On all platforms, when the user enters a single-line text box via the **Tab** key, the entire contents is highlighted and the editing cursor is at the end (right side) of the string.

- If you want to set the position or size of the component to an exact value, then modify its Position property. See "Locate and Move Components" on page 6-74 and "Resize GUIDE GUI Components" on page 6-67 for details.
- You specify the text font to display in the edit box by typing the name of a font residing on your system into the FontName entry in the Property Inspector. On Microsoft Windows platforms, the default is MS Sans Serif; on Macintosh and UNIX[®] platforms, the default is Helvetica.

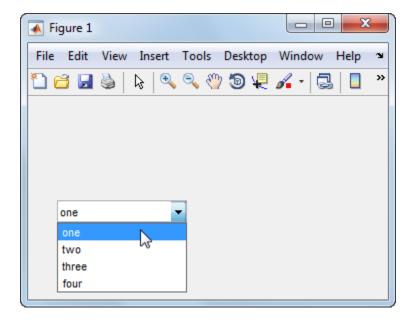

Tip To find out what fonts are available, type uisetfont at the MATLAB prompt; a dialog displays containing a list box from which you can select and preview available fonts. When you select a font, its name and other characteristics are returned in a structure, from which you can copy the FontName string and paste it into the Property Inspector. Not all fonts listed may be available to users of your GUI on their systems.

Static Text

To create a static text component with text Select a data set, as shown in this figure:

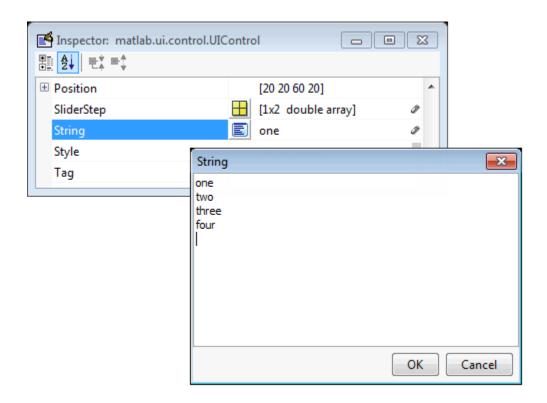
Specify the text that appears in the component by setting the component String
property to the desired text, in this case Select a data set.

To display the & character in a list item, use two & characters in the string. The words remove, default, and factory (case sensitive) are reserved. To use one of these as a label, prepend a backslash (\) to the string. For example, \remove yields remove.


If your component is not wide enough to accommodate the specified String, MATLAB software wraps the string.

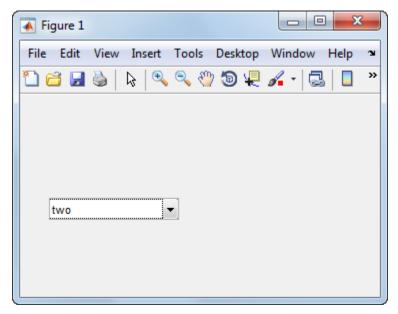
Select a data set.

- If you want to set the position or size of the component to an exact value, then modify its Position property. See "Locate and Move Components" on page 6-74 and "Resize GUIDE GUI Components" on page 6-67 for details.
- You can specify a text font, including its FontName, FontWeight, FontAngle, FontSize, and FontUnits properties. For details, see the previous topic, "Edit Text" on page 6-32, and for a programmatic approach, the section "Setting Font Characteristics" on page 10-14.


Pop-Up Menu

To create a pop-up menu (also known as a drop-down menu or combo box) with items **one**, **two**, **three**, and **four**, as shown in this figure:

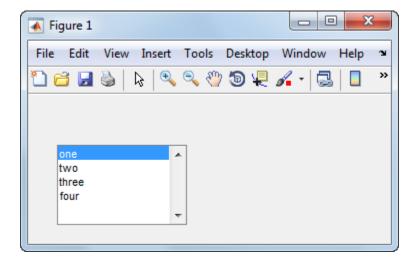
 Specify the pop-up menu items to be displayed by setting the String property to the desired items. Click the E


button to the right of the property name to open the Property Inspector editor.

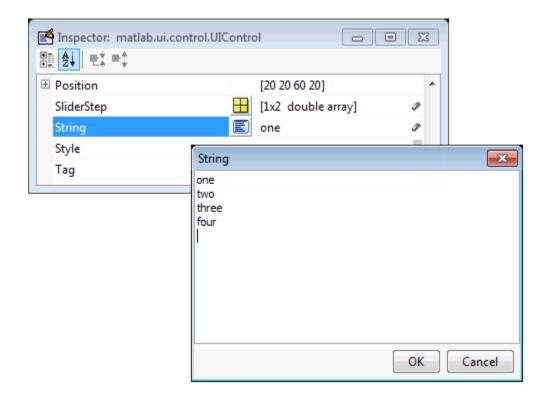
To display the & character in a menu item, use two & characters in the string. The words remove, default, and factory (case sensitive) are reserved. To use one of these as a label, prepend a backslash (\) to the string. For example, \remove yields remove.

If the width of the component is too small to accommodate one or more of the specified strings, MATLAB software truncates those strings with an ellipsis.

• To select an item when the component is created, set Value to a scalar that indicates the index of the selected list item, where 1 corresponds to the first item in the list. If you set Value to 2, the menu looks like this when it is created:

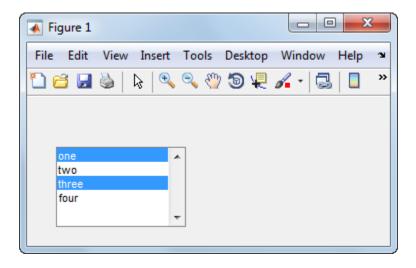


• If you want to set the position and size of the component to exact values, then modify its Position property. See "Locate and Move Components" on page 6-74 and "Resize GUIDE GUI Components" on page 6-67 for details. The height of a popup menu is determined by the font size. The height you set in the position vector is ignored.


Note The pop-up menu does not provide for a label. Use a "Static Text" on page 6-34 component to label the pop-up menu.

List Box

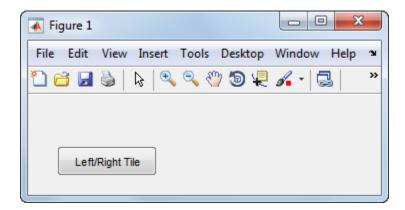
To create a list box with items one, two, three, and four, as shown in this figure:


• Specify the list of items to be displayed by setting the String property to the desired list. Use the Property Inspector editor to enter the list. You can open the editor by clicking the button to the right of the property name.

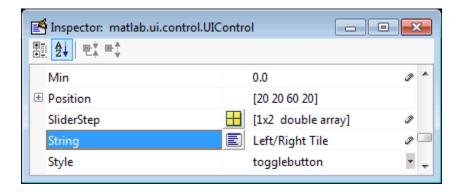
To display the & character in a label, use two & characters in the string. The words remove, default, and factory (case sensitive) are reserved. To use one of these as a label, prepend a backslash (\) to the string. For example, \remove yields remove.

If the width of the component is too small to accommodate one or more of the specified strings, MATLAB software truncates those strings with an ellipsis.

- Specify selection by using the Value property together with the Max and Min properties.
 - To select a single item when the component is created, set Value to a scalar that indicates the index of the selected list item, where 1 corresponds to the first item in the list.
 - To select more than one item when the component is created, set Value to a vector of indices of the selected items. Value = [1,3] results in the following selection.


To enable selection of more than one item, you must specify the Max and Min properties so that their difference is greater than 1. For example, Max = 2, Min = 0. Max default is 1, Min default is 0.

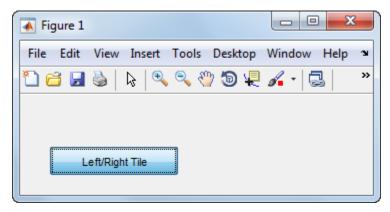
- If you want no initial selection, set the Max and Min properties to enable multiple selection, i.e., Max Min > 1, and then set the Value property to an empty matrix [].
- If the list box is not large enough to display all list entries, you can set the ListBoxTop property to the index of the item you want to appear at the top when the component is created.
- If you want to set the position or size of the component to an exact value, then modify its Position property. See "Locate and Move Components" on page 6-74and "Resize GUIDE GUI Components" on page 6-67 for details.


Note The list box does not provide for a label. Use a "Static Text" on page 6-34 component to label the list box.

Toggle Button

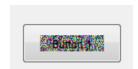
To create a toggle button with label Left/Right Tile, as shown in this figure:

• Specify the toggle button label by setting its String property to the desired label, in this case, Left/Right Tile.



To display the & character in a label, use two & characters in the string. The words remove, default, and factory (case sensitive) are reserved. To use one of these as a label, prepend a backslash (\) to the string. For example, \remove yields remove.

The toggle button accommodates only a single line of text. If you specify more than one line, only the first line is shown. If you create a toggle button that is too narrow to accommodate the specified String, MATLAB software truncates the string with an ellipsis.


• Create the toggle button with the button selected (depressed) by setting its Value property to the value of its Max property (default is 1). Set Value to Min (default is 0) to leave the toggle button unselected (raised). Correspondingly, when the user selects the toggle button, MATLAB software sets Value to Max, and to Min when the user deselects it. The following figure shows the toggle button in the depressed position.

- If you want to set the position or size of the component to an exact value, then modify its Position property. See "Locate and Move Components" on page 6-74 and "Resize GUIDE GUI Components" on page 6-67 for details.
- To add an image to a toggle button, assign the button's CData property an m-by-n-by-3 array of RGB values that defines a "truecolor image". You must do this programmatically in the opening function of the GUI code file. For example, the array img defines a 16-by-64-by-3 truecolor image using random values between 0 and 1 (generated by rand).

```
img = rand(16,64,3);
set(handles.togglebutton1,'CData',img);
```

where togglebutton1 is the toggle button's Tag property.

6

Note To manage exclusive selection of radio buttons and toggle buttons, put them in a button group. See "Button Group" on page 6-48 for more information.

Panels and Button Groups

Panels and button groups are containers that arrange GUI components into groups. If you move the panel or button group, its children move with it and maintain their positions relative to the panel or button group.

To define panels and button groups, you must set certain properties. To do this:

- 1 Use the Property Inspector to modify the appropriate properties. Open the Property Inspector by selecting View > Property Inspector or by clicking the Property Inspector button . ■
- **2** In the layout area, select the component you are defining.

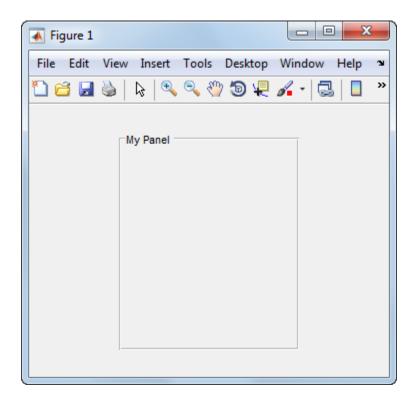
Note See "GUIDE Components" on page 6-13 for descriptions of these components. See "Callbacks for Specific Components" on page 8-12 for basic examples of programming these components.

Subsequent topics describe commonly used properties of panels and button groups and offer a simple example for each component.

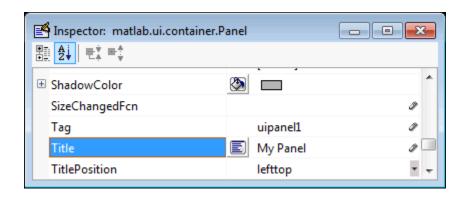
- · "Commonly Used Properties" on page 6-44
- "Panel" on page 6-45
- "Button Group" on page 6-48

Commonly Used Properties

The most commonly used properties needed to describe a panel or button group are shown in the following table:

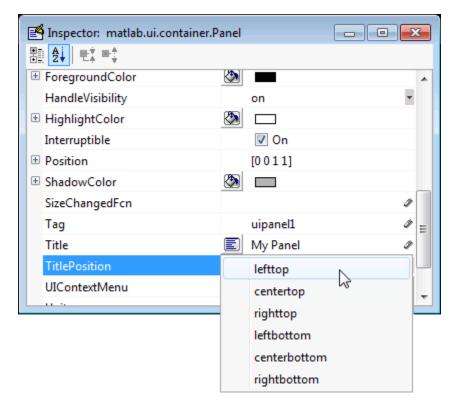

Property	Values	Description
	_	Size of the component and its location relative to its parent.

Property	Values	Description
Title	String	Component label.
TitlePosition	lefttop, centertop, righttop, leftbottom, centerbottom, rightbottom. Default is lefttop.	Location of title string in relation to the panel or button group.
Units	characters, centimeters, inches, normalized, pixels, points. Default is characters.	Units of measurement used to interpret the Position property vector


For a complete list of properties and for more information about the properties listed in the table, see the Uipanel Properties and Uibuttongroup Properties.

Panel

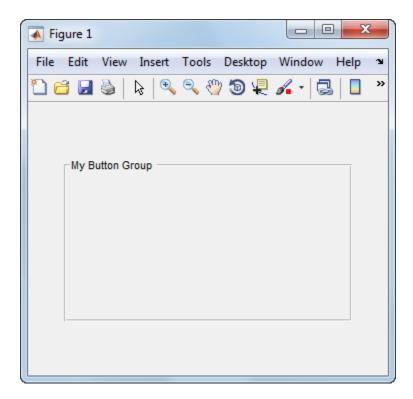
To create a panel with title My Panel as shown in the following figure:



• Specify the panel title by setting the Title property to the desired string, in this case My Panel.

To display the & character in the title, use two & characters in the string. The words remove, default, and factory (case sensitive) are reserved. To use one of these as a label, prepend a backslash (\) to the string. For example, \remove yields remove.

• Specify the location of the panel title by selecting one of the available TitlePosition property values from the pop-up menu, in this case lefttop. You can position the title at the left, middle, or right of the top or bottom of the panel.

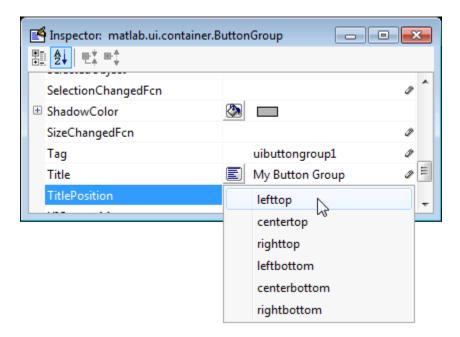


• If you want to set the position or size of the panel to an exact value, then modify its Position property. See "Locate and Move Components" on page 6-74 and "Resize GUIDE GUI Components" on page 6-67 for details.

Note For more information and additional tips and techniques, see "Add a Component to a Panel or Button Group" on page 6-20 and the uipanel documentation.

Button Group

To create a button group with title My Button Group as shown in the following figure:



• Specify the button group title by setting the Title property to the desired string, in this case My Button Group.

To display the & character in the title, use two & characters in the string. The words remove, default, and factory (case sensitive) are reserved. To use one of these as a label, prepend a backslash (\) to the string. For example, \remove yields remove.

• Specify the location of the button group title by selecting one of the available TitlePosition property values from the pop-up menu, in this case lefttop. You can position the title at the left, middle, or right of the top or bottom of the button group.

• If you want to set the position or size of the button group to an exact value, then modify its Position property. See "Locate and Move Components" on page 6-74 and "Resize GUIDE GUI Components" on page 6-67 for details.

Note For more information and additional tips and techniques, see "Add a Component to a Panel or Button Group" on page 6-20 and the uibuttongroup documentation.

Axes

Axes enable your GUI to display graphics such as graphs and images using commands such as: plot, surf, line, bar, polar, pie, contour, and mesh.

To define an axes, you must set certain properties. To do this:

Use the Property Inspector to modify the appropriate properties. Open the Property Inspector by selecting **View** > **Property Inspector** or by clicking the Property Inspector button ■.

2 In the layout area, select the component you are defining.

Note See "GUIDE Components" on page 6-13 for a description of this component.

Subsequent topics describe commonly used properties of axes and offer a simple example.

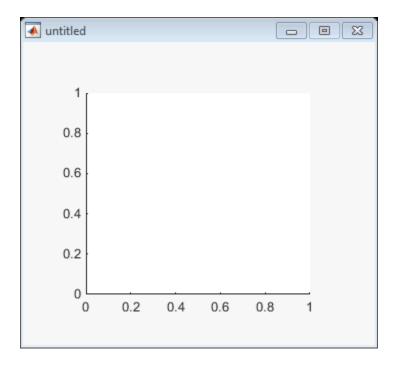
- "Commonly Used Properties" on page 6-51
- "Create Axes" on page 6-52

Commonly Used Properties

The most commonly used properties needed to describe an axes are shown in the following table:

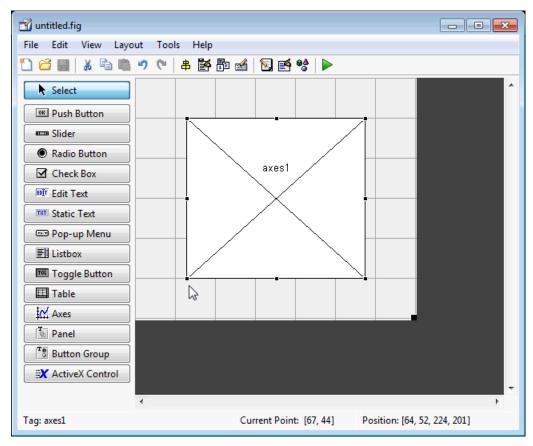
Property	Values	Description
NextPlot	add, replace, replacechildren. Default is replace	Specifies whether plotting adds graphics, replaces graphics and resets axes properties to default, or replaces graphics only.
Position	4-element vector: [distance from left, distance from bottom, width, height].	Size of the component and its location relative to its parent.
Units	normalized, centimeters, characters, inches, pixels, points. Default is normalized.	Units of measurement used to interpret position vector

For a complete list of properties and for more information about the properties listed in the table, see Axes Properties.


See commands such as the following for more information on axes objects: plot, surf, line, bar, polar, pie, contour, imagesc, and mesh.

Many of these graphing functions reset axes properties by default, according to the setting of its NextPlot property, which can cause unwanted behavior in a GUI, such as resetting axis limits and removing axes context menus and callbacks. See the next

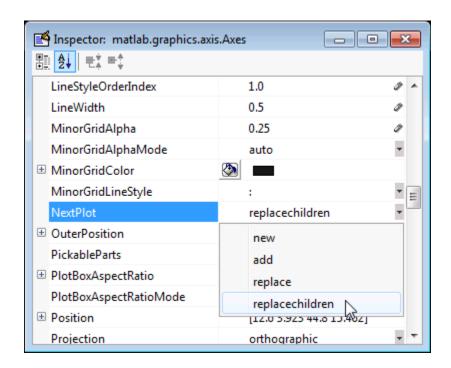
section and also "Add Axes" on page 10-35 in the Creating GUIs Programmatically section for information on details on setting the NextPlot axes property.


Create Axes

Here is an axes in a GUIDE GUI:

Use these guidelines when you create axes objects in GUIDE:

Allow for tick marks to be placed outside the box that appears in the Layout Editor.
The axes above looks like this in the layout editor; placement allows space at the left
and bottom of the axes for tick marks. Functions that draw in the axes update the tick
marks appropriately.


• Use the title, xlabel, ylabel, zlabel, and text functions in the GUI code file to label an axes component. For example,

```
xlh = (axes_handle,'Years')
```

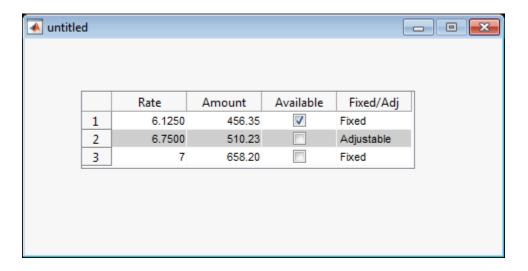
labels the X-axis as Years. The handle of the X-axis label is x1h.

The words remove, default, and factory (case sensitive) are reserved. To use one of these in component text, prepend a backslash (\) to the string. For example, \remove yields remove.

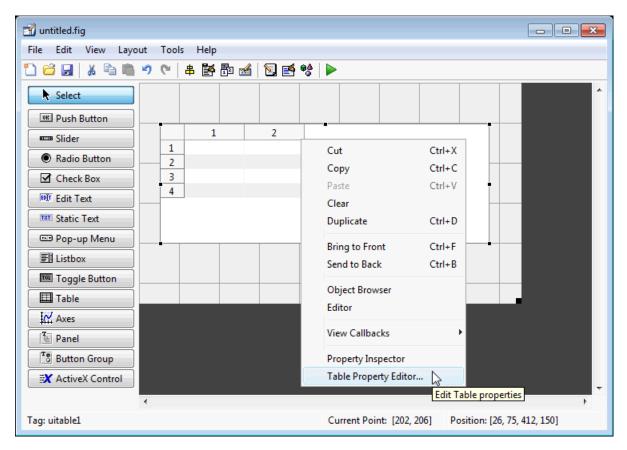
- If you want to set the position or size of the axes to an exact value, then modify its Position property. See "Locate and Move Components" on page 6-74 and "Resize GUIDE GUI Components" on page 6-67 for details.
- If you customize axes properties, some of them (or example, callbacks, font characteristics, and axis limits and ticks) may get reset to default every time you draw a graph into the axes when the NextPlot property has its default value of 'replace'. To keep customized properties as you want them, set NextPlot to 'replacechildren' in the Property Inspector, as shown here.

Table

Tables enable you to display data in a two dimensional table. You can use the Property Inspector to get and set the object property values.


Commonly Used Properties

The most commonly used properties of a table component are listed in the table below. These are grouped in the order they appear in the Table Property Editor. Please refer to uitable documentation for detail of all the table properties:


Group	Property	Values	Description
Column	ColumnName	1-by-n cell array of strings {'numbered'} empty matrix ([])	The header label of the column.
	ColumnFormat	Cell array of strings	Determines display and editability of columns
	ColumnWidth	1-by- <i>n</i> cell array or 'auto'	Width of each column in pixels; individual column widths can also be set to 'auto'
	ColumnEditable	logical 1-by-n matrix scalar logical value empty matrix ([])	Determines data in a column as editable
Row	RowName	1-by- <i>n</i> cell array of strings	Row header label names
Color	BackgroundColor	n-by-3 matrix of RGB triples	Background color of cells
	RowStriping	{on} off	Color striping of table rows
Data	Data	Matrix or cell array of numeric, logical, or character data	Table data.

Create a Table

To create a GUI with a table in GUIDE as shown, do the following:

Drag the table icon on to the Layout Editor and right click in the table. From the table's context menu, select **Table Property Editor**. You can also select **Table Property Editor** from the **Tools** menu when you select a table by itself.

Use the Table Property Editor

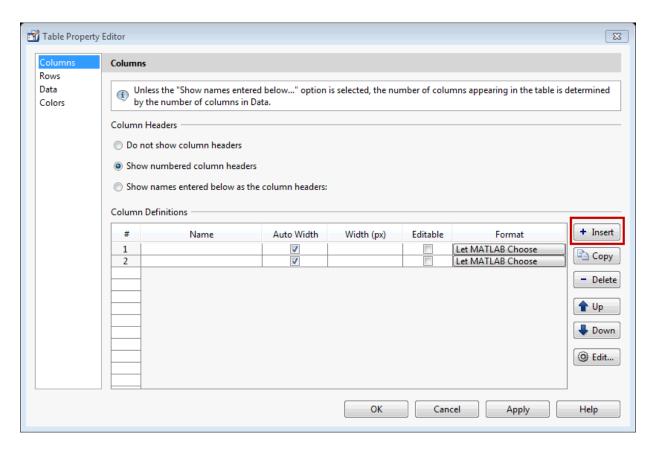
When you open it this way, the Table Property Editor displays the **Column** pane. You can also open it from the Property Inspector by clicking one of its Table Property Editor

icons , in which case the Table Property Editor opens to display the pane appropriate for the property you clicked.

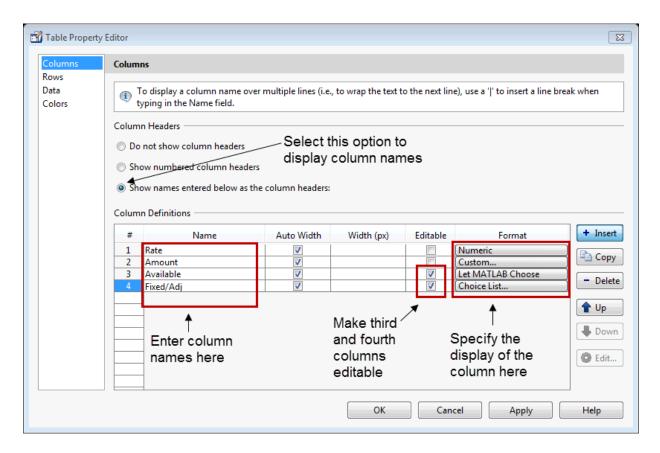
Clicking items in the list on the left hand side of the Table Property Editor changes the contents of the pane to the right. Use the items to activate controls for specifying the table's **Columns**, **Rows**, **Data**, and **Color** options.

The **Columns** and **Rows** panes each have a data entry area where you can type names and set properties. on a per-column or per-row basis. You can edit only one row or column

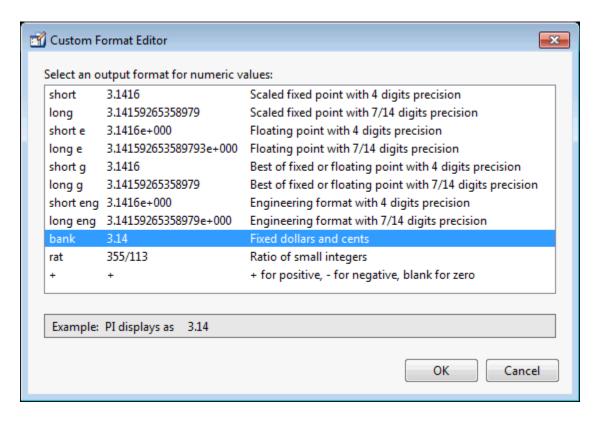
definition at a time. These panes contain a vertical group of five buttons for editing and navigating:

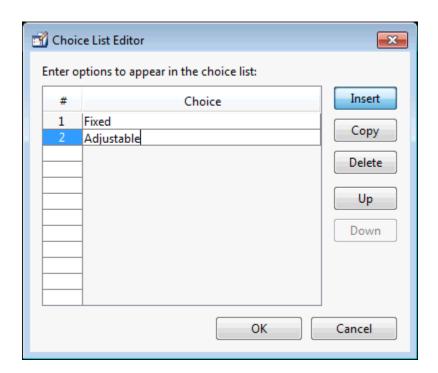

Button	Purpose	Accelerator Keys	
		Windows	Macintosh
Insert	Inserts a new column or row definition entry below the current one	Insert	Insert
Delete	Deletes the current column or row definition entry (no undo)	Ctrl+D	Cmd+D
Сору	Inserts a Copy of the selected entry in a new row below it	Ctrl+P	Cmd+P
Up	Moves selected entry up one row	Ctrl+ uparrow	Cmd+ uparrow
Down	Moves selected entry down one row	Ctrl+ downarrow	Cmd+ downarrow

Keyboard equivalents only operate when the cursor is in the data entry area. In addition to those listed above, typing **Ctrl+T** or **Cmd+T** selects the entire field containing the cursor for editing (if the field contains text).

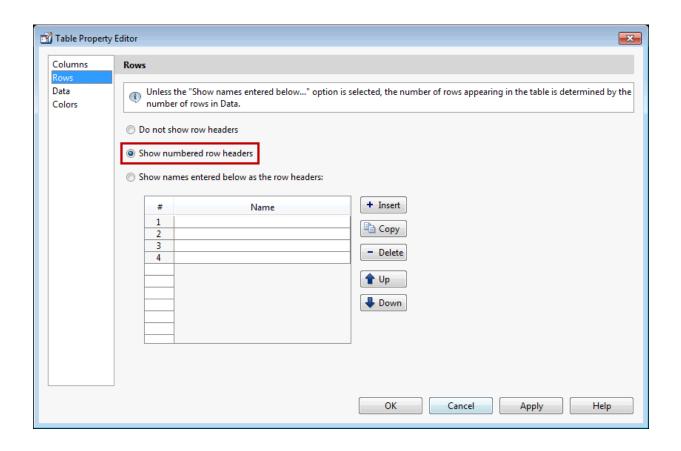

To save changes to the table you make in the Table Property Editor, click **OK**, or click **Apply** commit changes and keep on using the Table Property Editor.

Set Column Properties


Click **Insert** to add two more columns.


Select **Show names entered below as the column headers** and set the **ColumnName** by entering Rate, Amount, Available, and Fixed/Adj in **Name** group. for the Available and Fixed/Adj columns set the **ColumnEditable** property to **on**. Lastly set the **ColumnFormat** for the four columns

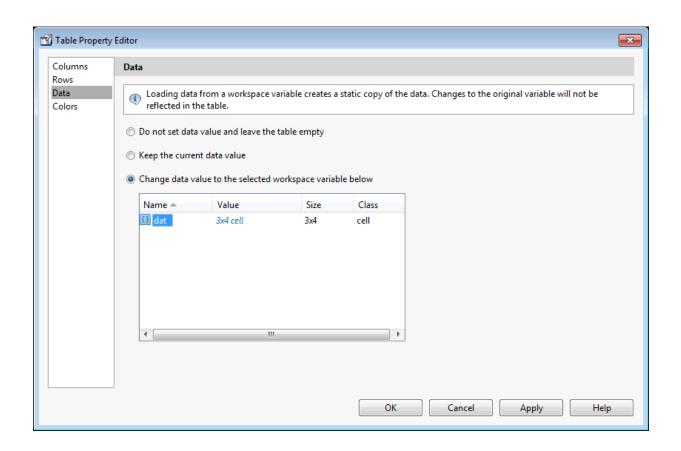
For the Rate column, select **Numeric**. For the Amount Column select **Custom** and in the Custom Format Editor, choose **Bank**.


Leave the Available column at the default value. This allows MATLAB to chose based on the value of the Data property of the table. For the Fixed/Adj column select Choice List to create a pop-up menu. In the Choice List Editor, click **Insert** to add a second choice and type Fixed and Adjustable as the 2 choices.

Note: For a user to select items from a choice list, the ColumnEditable property of the column that the list occupies must be set to 'true'. The pop-up control only appears when the column is editable.

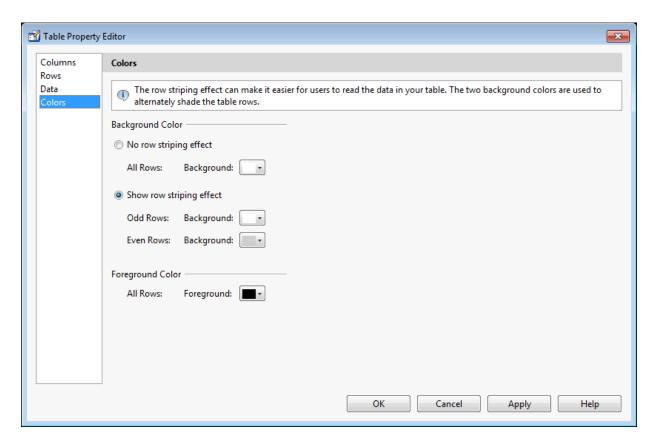
Set Row Properties

In the Row tab, leave the default RowName, Show numbered row headers.



Set Data Properties

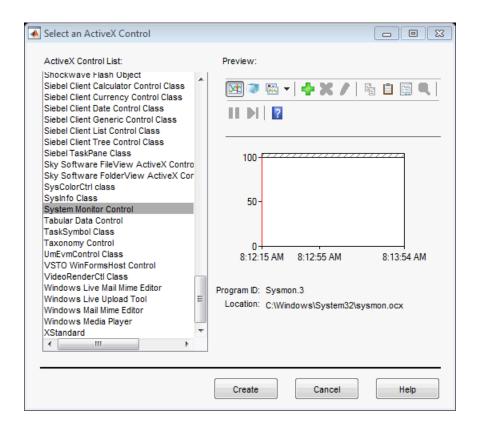
Use the Data property to specify the data in the table. Create the data in the command window before you specify it in GUIDE. For this example, type:


```
dat = {6.125, 456.3457, true, 'Fixed';...
6.75, 510.2342, false, 'Adjustable';...
7, 658.2, false, 'Fixed';};
```

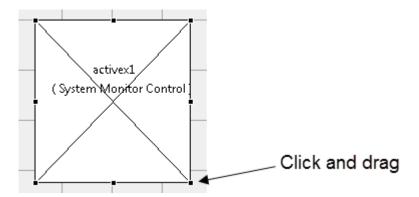
In the Table Property Editor, select the data that you defined and select **Change data** value to the selected workspace variable below.

Set Color Properties

Specify the ${\tt BackgroundColor}$ and ${\tt RowStriping}$ for your table in the Color tab.



You can change other uitable properties to the table via the Property Inspector.


ActiveX Component

When you drag an ActiveX component from the component palette into the layout area, GUIDE opens a dialog box, similar to the following, that lists the registered ActiveX controls on your system.

Note If MATLAB software is not installed locally on your computer — for example, if you are running the software over a network — you might not find the ActiveX control described in this example. To register the control, see "Registering Controls and Servers".

- 1 Select the desired ActiveX control. The right panel shows a preview of the selected control.
- 2 Click Create. The control appears as a small box in the Layout Editor.
- Resize the control to approximately the size of the square shown in the preview pane. You can do this by clicking and dragging a corner of the control, as shown in the following figure.

When you select an ActiveX control, you can open the ActiveX Property Editor by right-clicking and selecting **ActiveX Property Editor** from the context menu or clicking the **Tools** menu and selecting it from there.

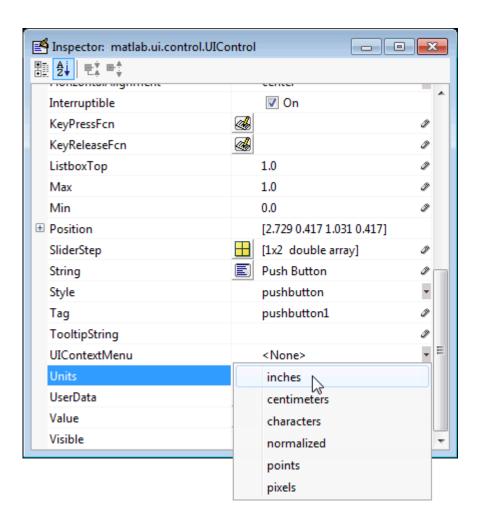
Note: What an **ActiveX Property Editor** contains and looks like is dependent on what user controls that the authors of the particular ActiveX object have created and stored in the GUI for the object. In some cases, a GUI without controls or no GUI at all appears when you select this menu item.

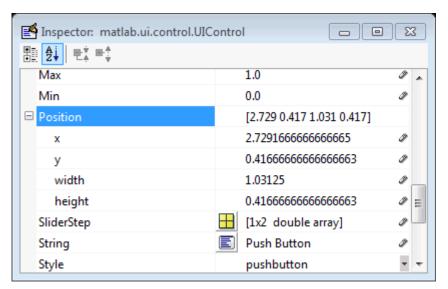
Resize GUIDE GUI Components

You can resize components in one of the following ways:

- "Drag a Corner of the Component" on page 6-67
- "Set the Component's Position Property" on page 6-68

Drag a Corner of the Component


Select the component you want to resize. Click one of the corner handles and drag it until the component is the desired size.


Set the Component's Position Property

Select one or more components that you want to resize. Then select **View > Property Inspector** click the Property Inspector button **.**

In the Property Inspector, scroll to the Units property and note whether the current setting is characters or normalized. Click the button next to Units and then change the setting to inches from the pop-up menu.

2 Click the + sign next to Position. The Property Inspector displays the elements of the Position property.

- **3** Type the width and height you want the components to be.
- 4 Reset the Units property to its previous setting, either characters or normalized.

Note To select multiple components, they must have the same parent. That is, they must be contained in the same figure, panel, or button group. See "Select Components" on page 6-70 for more information. Setting the Units property to characters (nonresizable GUIs) or normalized (resizable GUIs) gives the GUI a more consistent appearance across platforms. See "Cross-Platform Compatible Units" on page 6-121 for more information.

Copy, Paste, and Arrange Components

This topic provides basic information about selecting, copying, pasting, and deleting components in the layout area.

In this section...

"Select Components" on page 6-70

"Copy, Cut, and Clear Components" on page 6-71

"Paste and Duplicate Components" on page 6-71

"Front-to-Back Positioning" on page 6-72

Select Components

You can select components in the layout area in the following ways:

- Click a single component to select it.
- Press **Ctrl+A** to select all child objects of the figure. This does not select components that are child objects of panels or button groups.
- Click and drag the cursor to create a rectangle that encloses the components you want to select. If the rectangle encloses a panel or button group, only the panel or button group is selected, not its children. If the rectangle encloses part of a panel or button group, only the components within the rectangle that are child objects of the panel or button group are selected.
- · Select multiple components using the **Shift** and **Ctrl** keys.

In some cases, a component may lie outside its parent's boundary. Such a component is not visible in the Layout Editor but can be selected by dragging a rectangle that encloses it or by selecting it in the Object Browser. Such a component is visible in the active GUI.

See "View the GUIDE GUI Object Hierarchy" on page 6-119 for information about the Object Browser.

Note You can select multiple components only if they have the same parent. To determine the child objects of a figure, panel, or button group, use the Object Browser.

Copy, Cut, and Clear Components

Use standard menu and pop-up menu commands, toolbar icons, keyboard keys, and shortcut keys to copy, cut, and clear components.

Copy

Copying places a copy of the selected components on the clipboard. A copy of a panel or button group includes its children.

Cut

Cutting places a copy of the selected components on the clipboard and deletes them from the layout area. If you cut a panel or button group, you also cut its children.

Clear

Clearing deletes the selected components from the layout area. It does not place a copy of the components on the clipboard. If you clear a panel or button group, you also clear its children.

Paste and Duplicate Components

Paste

Use standard menu and pop-up menu commands, toolbar icons, and shortcut keys to paste components. GUIDE pastes the contents of the clipboard to the location of the last mouse click. It positions the upper-left corner of the contents at the mouse click.

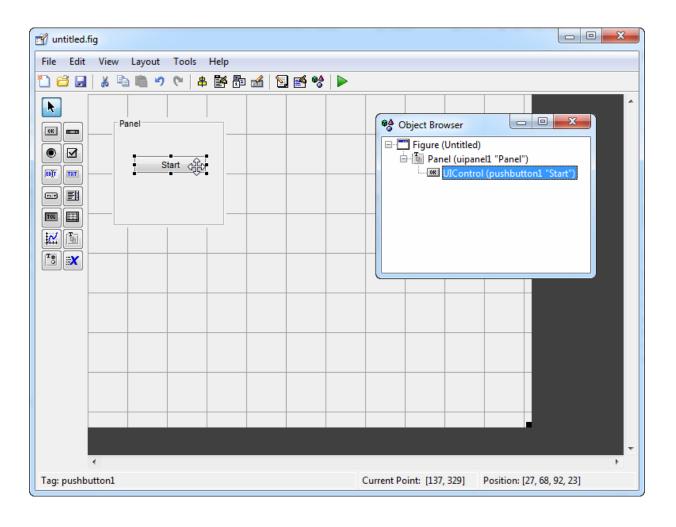
Consecutive pastes place each copy to the lower right of the last one.

Duplicate

Select one or more components that you want to duplicate, then do one of the following:

- · Copy and paste the selected components as described above.
- Select **Edit** > **Duplicate**. **Duplicate** places the copy to the lower right of the original.
- Right-click and drag the component to the desired location. The position of the cursor when you drop the components determines the parent of all the selected components.

Look for the highlight as described in "Add a Component to a Panel or Button Group" on page 6-20.


Front-to-Back Positioning

You can group components inside of panels and button groups. Doing so can enhance the appearance of your GUI and make it easier to navigate.

Use the Object Browser to control the front-to-back order, or stacking order, of panels, button groups, and the components they contain:

- 1 Select View > Object Browser.
- 2 In the layout, select the component you want to appear on top and move it slightly over the component you want to appear behind it. Moving a component slightly over another one makes the top component become a child of the one behind it. Notice that the listing of components in the Object Browser changes when you do this. The component you move to the top in the layout becomes indented and is listed below the component that is behind it. This reflects the new parent and child order.

For example, selecting and moving this button slightly over the panel ensures that it appears on top of the panel in the GUI.

Note Changing front-to-back positioning of components might change their tabbing behavior. See "Customize Tabbing Behavior in a GUIDE GUI" on page 6-88 for more information.

Locate and Move Components

You can locate or move components in one of the following ways:

In this section...

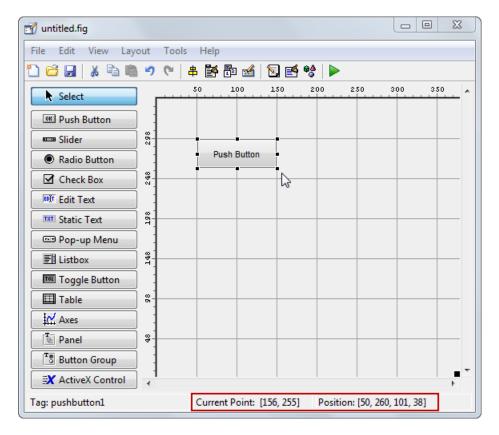
"Use Coordinate Readouts" on page 6-74

"Drag Components" on page 6-75

"Use Arrow Keys to Move Components" on page 6-76

"Set the Component's Position Property" on page 6-76

Another topic that may be of interest is


"Align GUIDE GUI Components" on page 6-79

Use Coordinate Readouts

Coordinate readouts indicate where a component is placed and where the mouse pointer is located. Use these readouts to position and align components manually. The **Position** readout shows the position of the selected component as the vector, [x y width height]. These values are displayed in units of pixels, regardless of the coordinate units you select for the component.

The **Current Point** readout displays the current mouse position in pixels.

The size of this push button is 101-by-38 pixels. The lower left corner of the button is located at x,y = (50,260). The mouse pointer is located at x,y = (156,255).

When you select multiple components, the **Position** readout displays numbers for x, y, width and height only if the objects have the same respective values; in all other cases it displays 'MULTI'.

Drag Components

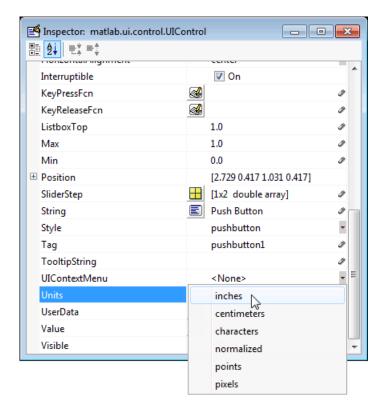
Select one or more components that you want to move, then drag them to the desired position and drop them. You can move components from the figure into a panel or button group. You can move components from a panel or button group into the figure or into another panel or button group.

The position of the cursor when you drop the components also determines the parent of all the selected components. Look for the highlight as described in "Add a Component to a Panel or Button Group" on page 6-20.

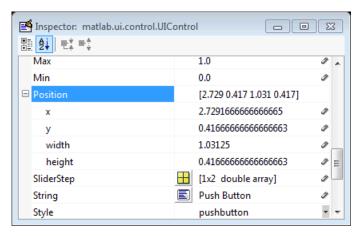
In some cases, one or more of the selected components may lie outside its parent's boundary. Such a component is not visible in the Layout Editor but can be selected by dragging a rectangle that encloses it or by selecting it in the Object Browser. Such a component is visible in the active GUI.

See "View the GUIDE GUI Object Hierarchy" on page 6-119 for information about the Object Browser.

Note To select multiple components, they must have the same parent. That is, they must be contained in the same figure, panel, or button group.


Use Arrow Keys to Move Components

Select one or more components that you want to move, then press and hold the arrow keys until the components have moved to the desired position. Note that the components remain children of the figure, panel, or button group from which you move them, even if they move outside its boundaries.


Set the Component's Position Property

Select one or more components that you want to move. Then open the Property Inspector from the **View** menu or by clicking the Property Inspector button **.**

In the Property Inspector, scroll to the Units property and note whether the current setting is characters or normalized. Click the button next to Units and then change the setting to inches from the pop-up menu.

2 Click the + sign next to Position. The Property Inspector displays the elements of the Position property.

- 3 If you have selected
 - Only one component, type the X and y coordinates of the point where you want the lower-left corner of the component to appear.
 - More than one component, type either the x or the y coordinate to align the components along that dimension.
- 4 Reset the Units property to its previous setting, either characters or normalized.

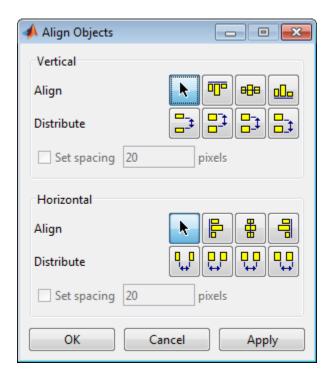
Note Setting the Units property to characters (nonresizable GUIs) or normalized (resizable GUIs) gives the GUI a more consistent appearance across platforms. See "Cross-Platform Compatible Units" on page 6-121 for more information.

Align GUIDE GUI Components

In this section...

"Align Objects Tool" on page 6-79

"Property Inspector" on page 6-82

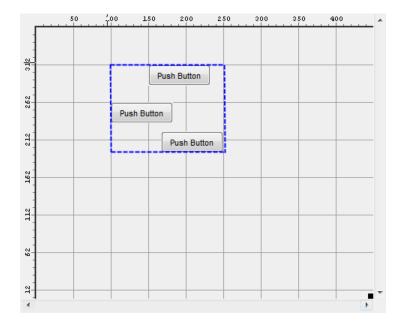

"Grid and Rulers" on page 6-85

"Guide Lines" on page 6-86

Align Objects Tool

The Align Objects tool enables you to position objects with respect to each other and to adjust the spacing between selected objects. The specified alignment operations apply to all components that are selected when you press the **Apply** button. To open the Align Objects tool in the GUIDE Layout Editor, select **Tools** > **Align Objects**.

Note To select multiple components, they must have the same parent. That is, they must be contained in the same figure, panel, or button group. See "Select Components" on page 6-70 for more information.


The Align Objects tool provides two types of alignment operations:

- · Align Align all selected components to a single reference line.
- **Distribute** Space all selected components uniformly with respect to each other.

Both types of alignment can be applied in the vertical and horizontal directions. In many cases, it is better to apply alignments independently to the vertical and horizontal using two separate steps.

Align Options

There are both vertical and horizontal align options. Each option aligns selected components to a reference line, which is determined by the bounding box that encloses the selected objects. For example, the following picture of the layout area shows the bounding box (indicated by the dashed line) formed by three selected push buttons.

All of the align options (vertical top, center, bottom and horizontal left, center, right) place the selected components with respect to the corresponding edge (or center) of this bounding box.

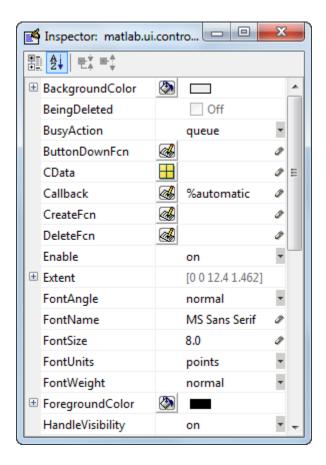
Distribute Options

Distributing components adds equal space between all components in the selected group. The distribute options operate in two different modes:

- · Equally space selected components within the bounding box (default)
- Space selected components to a specified value in pixels (check **Set spacing** and specify a pixel value)

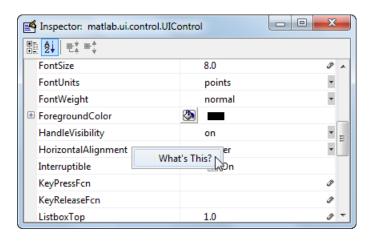
Both modes enable you to specify how the spacing is measured, as indicated by the button labels on the alignment tool. These options include spacing measured with respect to the following edges:

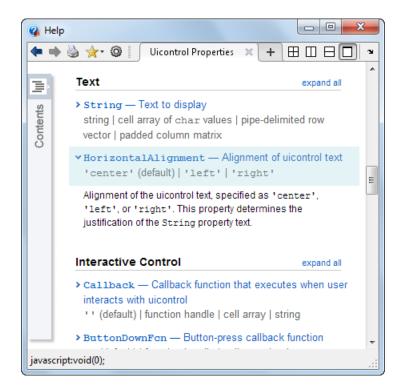
- · Vertical inner, top, center, and bottom
- · Horizontal inner, left, center, and right


Property Inspector

About the Property Inspector

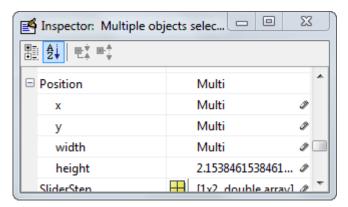
In GUIDE, as in MATLAB generally, you can see and set most components' properties using the Property Inspector. To open it from the GUIDE Layout Editor, do any of the following:


- Select the component you want to inspect, or double-click it to open the Property Inspector and bring it to the foreground
- Select View > Property Inspector.
- · Click the **Property Inspector** button


The Property Inspector window opens, displaying the properties of the selected component. For example, here is a view of a push button's properties.

Scroll down to see additional properties. Click any property value or icon to set its value.

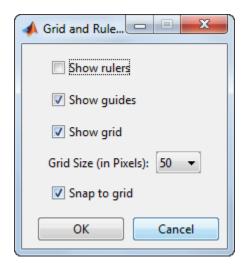
The Property Inspector provides context-sensitive help for individual properties. To see a definition of any property, right-click the name or value in the Property Inspector and click the **What's This?** menu item that appears. A context-sensitive help window opens displaying the definition of the property.



Use the Property Inspector to Align Components

The Property Inspector enables you to align components by setting their Position properties. A component's Position property is a 4-element vector that specifies the location of the component on the GUI and its size: [distance from left, distance from bottom, width, height]. The values are given in the units specified by the Units property of the component.

- 1 Select the components you want to align. See "Select Components" on page 6-70 for information.
- 2 Select View > Property Inspector or click the Property Inspector button .
- 3 In the Property Inspector, scroll to the Units property and note its current setting, then change the setting to inches.
- 4 Scroll to the Position property. This figure shows the Position property for multiple components of the same size.



- 5 Change the value of x to align their left sides. Change the value of y to align their bottom edges. For example, setting x to 2.0 aligns the left sides of the components 2 inches from the left side of the GUI.
- **6** When the components are aligned, change the Units property back to its original setting.

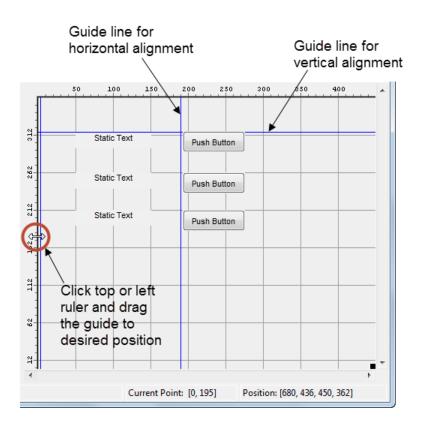
Grid and Rulers

The layout area displays a grid and rulers to facilitate component layout. Grid lines are spaced at 50-pixel intervals by default and you can select from a number of other values

ranging from 10 to 200 pixels. You can optionally enable *snap-to-grid*, which causes any object that is moved close to a grid line to jump to that line. Snap-to-grid works with or without a visible grid.

Use the Grid and Rulers dialog (select **Tools > Grid and Rulers**) to:

- · Control visibility of rulers, grid, and guide lines
- Set the grid spacing
- Enable or disable snap-to-grid


Guide Lines

The Layout Editor has both vertical and horizontal snap-to guide lines. Components snap to the line when you move them close to the line.

Guide lines are useful when you want to establish a reference for component alignment at an arbitrary location in the Layout Editor.

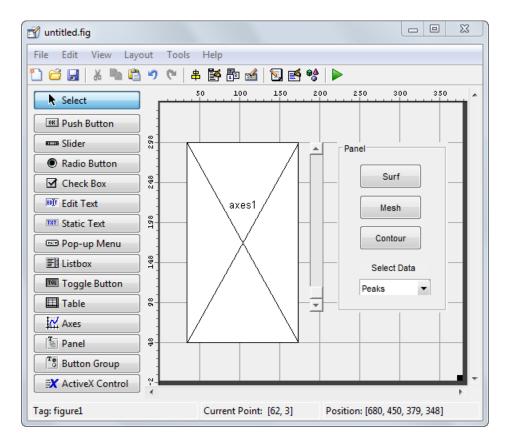
Creating Guide Lines

To create a guide line, click the top or left ruler and drag the line into the layout area.

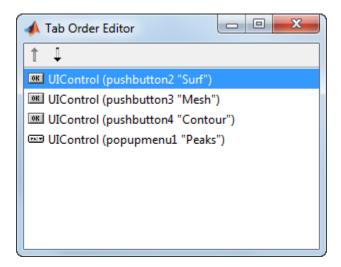
Customize Tabbing Behavior in a GUIDE GUI

A GUI's tab order is the order in which components of the GUI acquire focus when a user presses the **Tab** key on the keyboard. Focus is generally denoted by a border or a dotted border.

You can set, independently, the tab order of components that have the same parent. The GUI figure and each panel and button group in it has its own tab order. For example, you can set the tab order of components that have the figure as a parent. You can also set the tab order of components that have a panel or button group as a parent.


If, in tabbing through the components at the figure level, a user tabs to a panel or button group, then subsequent tabs sequence through the components of the panel or button group before returning to the level from which the panel or button group was reached.

Note Axes cannot be tabbed. From GUIDE, you cannot include ActiveX components in the tab order.


When you create a GUI, GUIDE sets the tab order at each level to be the order in which you add components to that level in the Layout Editor. This may not be the best order for the user.

Note Tab order also affects the stacking order of components. If components overlap, those that appear lower in the tabbing order, are drawn on top of those that appear higher in the order. See "Front-to-Back Positioning" on page 6-72 for more information.

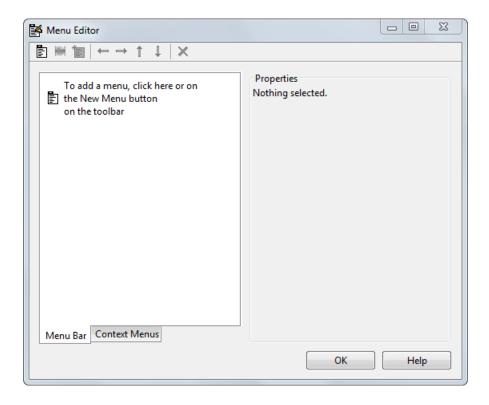
The figure in the following GUI contains an axes component, a slider, a panel, static text, and a pop-up menu. Of these, only the slider, the panel, and the pop-up menu at the figure level can be tabbed. The panel contains three push buttons, which can all be tabbed.

To examine and change the tab order of the panel components, click the panel background to select it, then select **Tools** > **Tab Order Editor** in the Layout Editor.

The Tab Order Editor displays the panel's components in their current tab order. To change the tab order, select a component and press the up or down arrow to move the component up or down in the list. If you set the tab order for the first three components in the example to be

- 1 Surf push button
- **2** Contour push button
- 3 Mesh push button

the user first tabs to the **Surf** push button, then to the **Contour** push button, and then to the **Mesh** push button. Subsequent tabs sequence through the remaining components at the figure level.


Create Menus for GUIDE GUIS

In this section...

"Menus for the Menu Bar" on page 6-91

"Context Menus" on page 6-101

You can use GUIDE to give GUIs menu bars with pull-down menus as well as context menus that you attach to components. You can create both types of menus using the Menu Editor. Access the Menu Editor from the **Tools** menu or click the **Menu Editor** button .

Menus for the Menu Bar

- · "How Menus Affect Figure Docking" on page 6-92
- · "Add Standard Menus to the Menu Bar" on page 6-93
- "Create a Menu" on page 6-93
- "Add Items to a Menu" on page 6-95
- "Additional Drop-Down Menus" on page 6-98
- "Cascading Menus" on page 6-98

When you create a drop-down menu, GUIDE adds its title to the GUI menu bar. You then can create menu items for that menu. Each menu item can have a cascading menu, also known as a submenu, and these items can have cascading menus, and so on.

How Menus Affect Figure Docking

By default, when you create a GUI with GUIDE, it does not create a menu bar for that GUI. You might not need menus for your GUI, but if you want the user to be able to dock or undock the GUI, it must contain a menu bar or a toolbar. This is because docking is controlled by the docking icon, a small curved arrow near the upper-right corner of the menu bar or the toolbar, as the following illustration shows.

Figure windows with a standard menu bar also have a **Desktop** menu from which the user can dock and undock them.

To display the docking arrow and the **Desktop > Dock Figure** menu item, use the Property Inspector to set the figure property DockControls to 'on'. You must also set the MenuBar and/or ToolBar figure properties to 'figure' to display docking controls.

The WindowStyle figure property also affects docking behavior. The default is 'normal', but if you change it to 'docked', then the following applies:

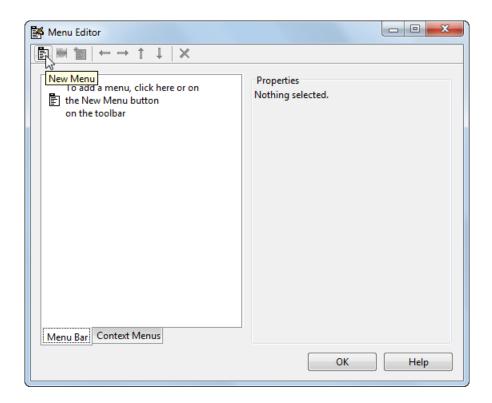
- The GUI opens docked in the desktop when you run it.
- The DockControls property is set to 'on' and cannot be turned off until WindowStyle is no longer set to 'docked'.
- If you undock a GUI created with WindowStyle 'docked', it will have not have a docking arrow unless the figure displays a menu bar or a toolbar (either standard or customized). When it has no docking arrow, users can undock it from the desktop, but will be unable to redock it there.

However, when you provide your own menu bar or toolbar using GUIDE, it can display the docking arrow if you want the GUI to be dockable. See the following sections and "Create Toolbars for GUIDE GUIS" on page 6-108 for details.

Note: GUIs that are modal dialogs (figures with WindowStyle set to 'modal') cannot have menu bars, toolbars, or docking controls.

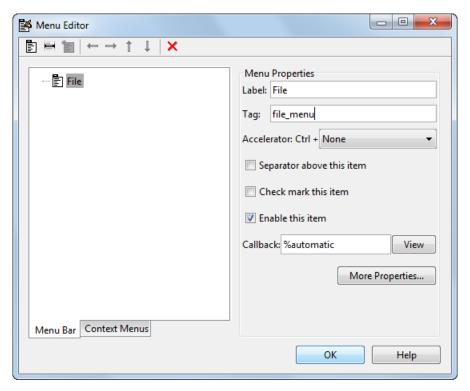
For more information, see the DockControls, MenuBar, ToolBar, and WindowStyle property descriptions in Figure Properties.

Add Standard Menus to the Menu Bar


The figure MenuBar property controls whether your GUI displays the MATLAB standard menus on the menu bar. GUIDE initially sets the value of MenuBar to none. If you want your GUI to display the MATLAB standard menus, use the Property Inspector to set MenuBar to figure.

- If the value of MenuBar is none, GUIDE automatically adds a menu bar that displays only the menus you create.
- If the value of MenuBar is figure, the GUI displays the MATLAB standard menus and GUIDE adds the menus you create to the right side of the menu bar.

In either case, you can enable users of your GUI to dock and undock it using its docking arrow by setting the figure's DockControls property to 'on'.

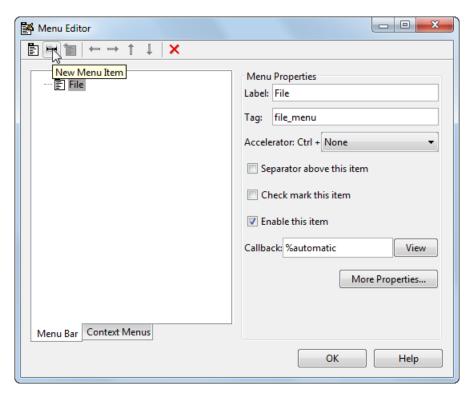

Create a Menu

1 Start a new menu by clicking the New Menu button in the toolbar. A menu title, Untitled 1, appears in the left pane of the dialog box.

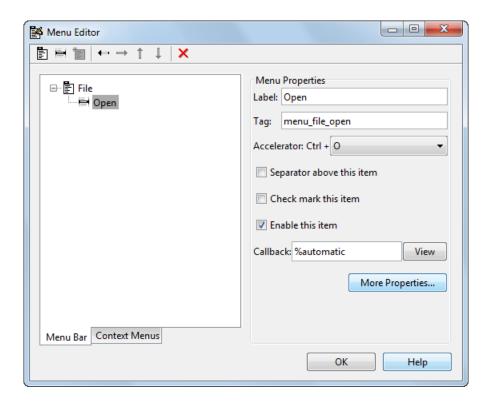
Note By default, GUIDE selects the **Menu Bar** tab when you open the Menu Editor.

2 Click the menu title to display a selection of menu properties in the right pane.

3 Fill in the **Label** and **Tag** fields for the menu. For example, set **Label** to File and set **Tag** to file_menu. Click outside the field for the change to take effect.


Label is a string that specifies the text label for the menu item. To display the & character in a label, use two & characters in the string. The words remove, default, and factory (case sensitive) are reserved. To use one of these as labels, prepend a backslash (\) to the string. For example, \remove yields remove.

Tag is a string that is an identifier for the menu object. It is used in the code to identify the menu item and must be unique in the GUI.


Add Items to a Menu

Use the **New Menu Item** tool to create menu items that are displayed in the drop-down menu.

Add an Open menu item under File, by selecting File then clicking the New Menu Item button in the toolbar. A temporary numbered menu item label, Untitled, appears.

2 Fill in the **Label** and **Tag** fields for the new menu item. For example, set **Label** to Open and set **Tag** to menu_file_open. Click outside the field for the change to take effect.

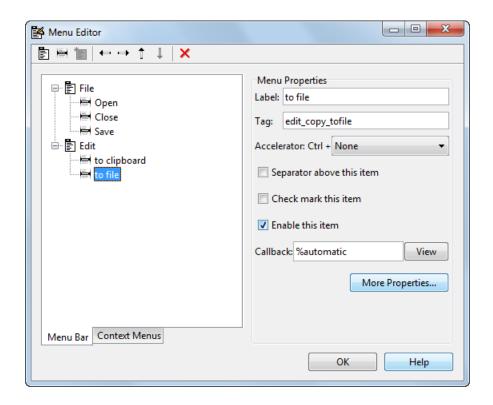
You can also

- Choose an alphabetic keyboard accelerator for the menu item with the Accelerator
 pop-up menu. In combination with Ctrl, this is the keyboard equivalent for a menu
 item that does not have a child menu. Note that some accelerators may be used for
 other purposes on your system and that other actions may result.
- Display a separator above the menu item by checking **Separator above this item**.
- Display a check next to the menu item when the menu is first opened by checking **Check mark this item**. A check indicates the current state of the menu item. See the example in "Add Items to the Context Menu" on page 6-103.
- Enable this item when the menu is first opened by checking **Enable this item**. This allows the user to select this item when the menu is first opened. If you clear this option, the menu item appears dimmed when the menu is first opened, and the user cannot select it.

Specify a string for the routine, i.e., the Callback, that performs the action associated with the menu item. If you have not yet saved the GUI, the default value is **%automatic.** When you save the GUI, and if you have not changed this field, GUIDE automatically sets the value using a combination of the **Tag** field and the GUI file name. See "Menu Item" on page 8-23 for more information about specifying this field and for programming menu items.

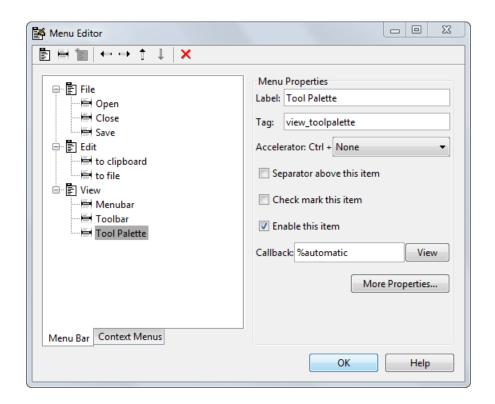
The View button displays the callback, if there is one, in an editor. If you have not yet saved the GUI, GUIDE prompts you to save it.

Open the Property Inspector, where you can change all menu properties, by clicking the More Properties button. For detailed information about the properties, see Uimenu Properties.


Note See "Menu Item" on page 8-23 and "How to Update a Menu Item Check" on page 8-25 for programming information and basic examples.

Additional Drop-Down Menus

To create additional drop-down menus, use the New Menu button in the same way you did to create the File menu. For example, the following figure also shows an Edit dropdown menu.


Cascading Menus

To create a cascading menu, select the menu item that will be the title for the cascading menu, then click the **New Menu Item** button. In the example below, **Copy** is a cascading menu.



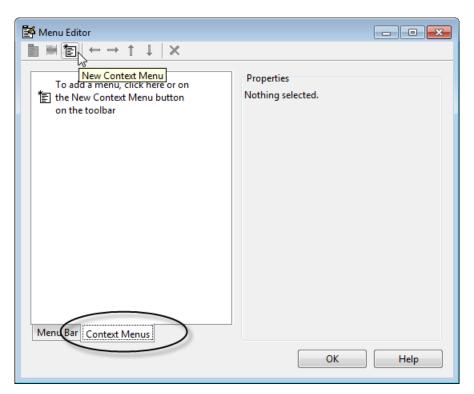
Note See "Menu Item" on page 8-23 for information about programming menu items.

The following Menu Editor illustration shows three menus defined for the figure menu bar.

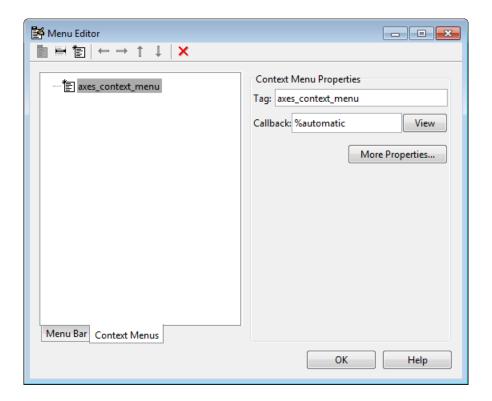
When you run the GUI, the menu titles appear in the menu bar.

Context Menus

A context menu is displayed when a user right-clicks the object for which the menu is defined. The Menu Editor enables you to define context menus and associate them with objects in the layout. The process has three steps:

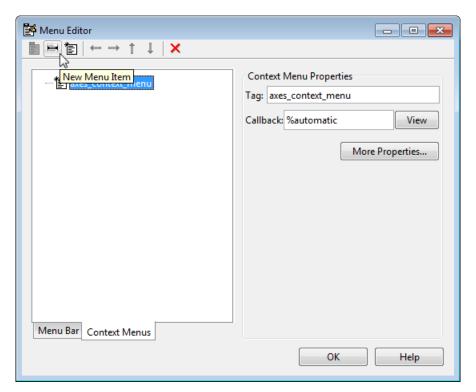

- 1 "Create the Parent Menu" on page 6-102
- ${\bf 2}$ "Add Items to the Context Menu" on page 6-103
- **3** "Associate the Context Menu with an Object" on page 6-106

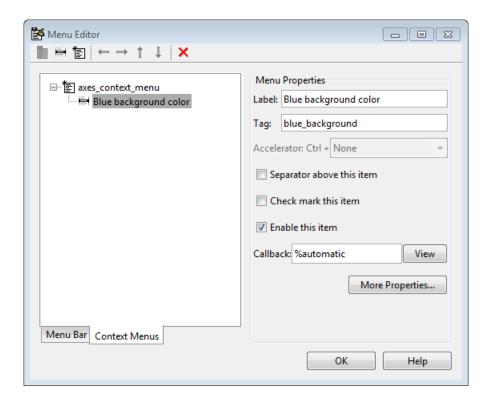
Note See "Menus for the Menu Bar" on page 6-91 for information about defining menus in general. See "Menu Item" on page 8-23 for information about defining local callback functions for your menus.


Create the Parent Menu

All items in a context menu are children of a menu that is not displayed on the figure menu bar. To define the parent menu:

1 Select the Menu Editor's **Context Menus** tab and select the New Context Menu button from the toolbar.


2 Select the menu, and in the **Tag** field type the context menu tag (axes_context_menu in this example).


Add Items to the Context Menu

Use the New Menu Item button to create menu items that are displayed in the context menu.

1 Add a **Blue background color** menu item to the menu by selecting axes_context_menu and clicking the **New Menu Item** tool. A temporary numbered menu item label, Untitled, appears.

2 Fill in the **Label** and **Tag** fields for the new menu item. For example, set **Label** to Blue background color and set **Tag** to blue_background. Click outside the field for the change to take effect.

You can also modify menu items in these ways:

- Display a separator above the menu item by checking Separator above this item.
- Display a check next to the menu item when the menu is first opened by checking **Check mark this item**. A check indicates the current state of the menu item. See the example in "Add Items to the Context Menu" on page 6-103. See "How to Update a Menu Item Check" on page 8-25 for a code example.
- Enable this item when the menu is first opened by checking **Enable this item**. This allows the user to select this item when the menu is first opened. If you clear this option, the menu item appears dimmed when the menu is first opened, and the user cannot select it.
- Specify a Callback for the menu that performs the action associated with the menu item. If you have not yet saved the GUI, the default value is %automatic. When you save the GUI, and if you have not changed this field, GUIDE automatically creates a

callback in the code file using a combination of the **Tag** field and the GUI file name. The callback's name does not display in the **Callback** field of the Menu Editor, but selecting the menu item does trigger it.

You can also type an unquoted string into the **Callback** field to serve as a callback. It can be any valid MATLAB expression or command. For example, the string

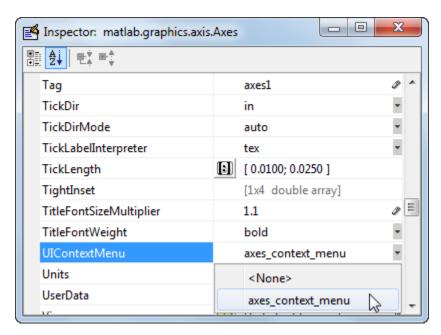
```
set(gca, 'Color', 'y')
```

sets the current axes background color to yellow. However, the preferred approach to performing this operation is to place the callback in the GUI code file. This avoids the use of gca, which is not always reliable when several figures or axes exist. Here is a version of this callback coded as a function in the GUI code file:

```
function axesyellow_Callback(hObject, eventdata, handles)
% hObject handle to axesyellow (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
set(handles.axes1,'Color','y')
This code sets the background color of the GUI axes with Tag axes1 no matter to
what object the context menu is attached to.
```

If you enter a callback string in the Menu Editor, it overrides the callback for the item in the code file, if any has been saved. If you delete a string you have entered in the **Callback** field, the callback for the item in the GUI code file (if any) is executed when GUI runs and the item is selected.

See "Menu Item" on page 8-23 for more information about specifying this field and for programming menu items. For another example of programming context menus in GUIDE, see "Synchronized Data Presentations in a GUIDE GUI" on page 9-30.


The **View** button displays the callback, if there is one, in an editor. If you have not yet saved the GUI, GUIDE prompts you to save it.

 Open the Property Inspector, where you can change all menu properties except callbacks, by clicking the **More Properties** button. For detailed information about these properties, see Uicontextmenu Properties.

Associate the Context Menu with an Object

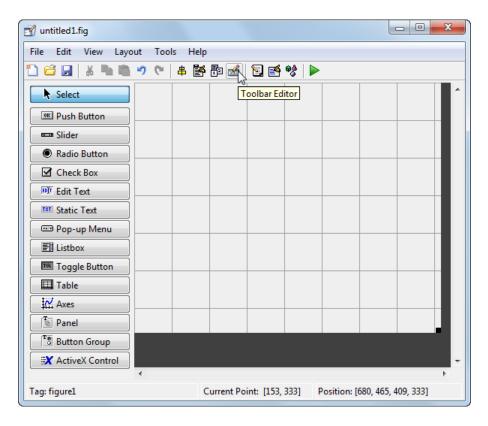
- 1 In the Layout Editor, select the object for which you are defining the context menu.
- 2 Use the Property Inspector to set this object's UIContextMenu property to the name of the desired context menu.

The following figure shows the UIContextMenu property for the axes object with Tag property axes1.

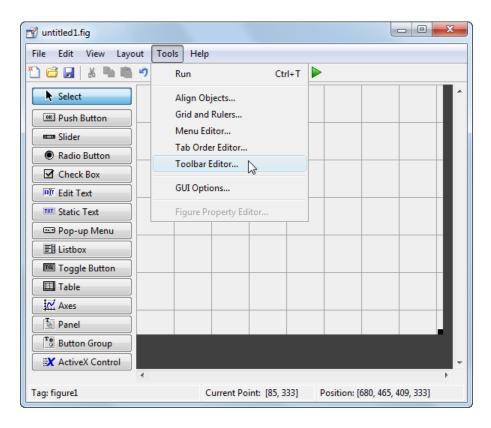
In the GUI code file, complete the local callback function for each item in the context menu. Each callback executes when a user selects the associated context menu item. See "Menu Item" on page 8-23 for information on defining the syntax.

Note See "Menu Item" on page 8-23 and "How to Update a Menu Item Check" on page 8-25 for programming information and basic examples.

Create Toolbars for GUIDE GUIS


In this section...

"Toolbar and Tools" on page 6-108


"Editing Tool Icons" on page 6-116

Toolbar and Tools

You can add a toolbar to a GUI you create in GUIDE with the Toolbar Editor, which you open from the GUIDE Layout Editor toolbar.

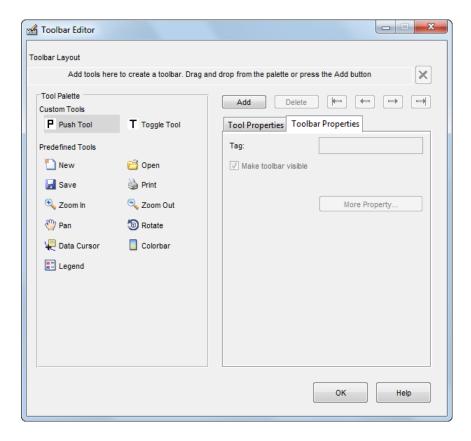
You can also open the Toolbar Editor from the **Tools** menu.

The Toolbar Editor gives you interactive access to all the features of the uitoolbar, uipushtool, and uitoggletool functions. It only operates in the context of GUIDE; you cannot use it to modify any of the built-in MATLAB toolbars. However, you can use the Toolbar Editor to add, modify, and delete a toolbar from any GUI in GUIDE.

Currently, you can add one toolbar to your GUI in GUIDE. However, your GUI can also include the standard MATLAB figure toolbar. If you need to, you can create a toolbar that looks like a normal figure toolbar, but customize its callbacks to make tools (such as pan, zoom, and open) behave in specific ways.

Note: You do not need to use the Toolbar Editor if you simply want your GUI to have a standard figure toolbar. You can do this by setting the figure's ToolBar property to 'figure', as follows:

- 1 Open the GUI in GUIDE.
- 2 From the View menu, open Property Inspector.
- **3** Set the ToolBar property to 'figure' using the drop-down menu.
- 4 Save the figure


If you later want to remove the figure toolbar, set the ToolBar property to 'auto' and resave the GUI. Doing this will not remove or hide your custom toolbar, should the GUI have one. See "Create Toolbars for Programmatic GUIs" on page 10-88 for more information about making toolbars manually.

If you want users to be able to dock and undock a GUI on the MATLAB desktop, it must have a toolbar or a menu bar, which can either be the standard ones or ones you create in GUIDE. In addition, the figure property <code>DockControls</code> must be turned on. For details, see "How Menus Affect Figure Docking" on page 6-92.

Use the Toolbar Editor

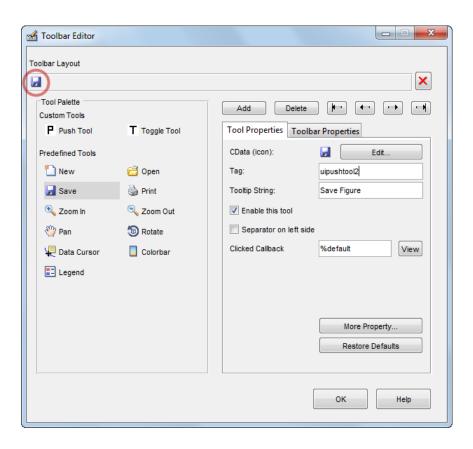
The Toolbar Editor contains three main parts:

- The Toolbar Layout preview area on the top
- The Tool Palette on the left
- · Two tabbed property panes on the right

To add a tool, drag an icon from the **Tool Palette** into the **Toolbar Layout** (which initially contains the text prompt shown above), and edit the tool's properties in the **Tool Properties** pane.

When you first create a GUI, no toolbar exists on it. When you open the Toolbar Editor and place the first tool, a toolbar is created and a preview of the tool you just added appears in the top part of the window. If you later open a GUI that has a toolbar, the Toolbar Editor shows the existing toolbar, although the Layout Editor does not.

Add Tools


You can add a tool to a toolbar in three ways:

Drag and drop tools from the Tool Palette.

- Select a tool in the palette and click the **Add** button.
- Double-click a tool in the palette.

Dragging allows you to place a tool in any order on the toolbar. The other two methods place the tool to the right of the right-most tool on the **Toolbar Layout**. The new tool is selected (indicated by a dashed box around it) and its properties are shown in the **Tool Properties** pane. You can select only one tool at a time. You can cycle through the **Tool Palette** using the tab key or arrow keys on your computer keyboard. You must have placed at least one tool on the toolbar.

After you place tools from the **Tool Palette** into the **Toolbar Layout** area, the Toolbar Editor shows the properties of the currently selected tool, as the following illustration shows.

Predefined and Custom Tools

The Toolbar Editor provides two types of tools:

- Predefined tools, having standard icons and behaviors
- · Custom tools, having generic icons and no behaviors

Predefined Tools

The set of icons on the bottom of the **Tool Palette** represent standard MATLAB figure tools. Their behavior is built in. Predefined tools that require an axes (such as pan and zoom) do not exhibit any behavior in GUIs lacking axes. The callback(s) defining the behavior of the predefined tool are shown as <code>%default</code>, which calls the same function that the tool calls in standard figure toolbars and menus (to open files, save figures, change modes, etc.). You can change <code>%default</code> to some other callback to customize the tool; GUIDE warns you that you will modify the behavior of the tool when you change a callback field or click the **View** button next to it, and asks if you want to proceed or not.

Custom Tools

The two icons at the top of the Tool Palette create pushtools and toggletools. These have no built-in behavior except for managing their appearance when clicked on and off. Consequently, you need to provide your own callback(s) when you add one to your toolbar. In order for custom tools to respond to clicks, you need to edit their callbacks to create the behaviors you desire. Do this by clicking the **View** button next to the callback in the **Tool Properties** pane, and then editing the callback in the Editor window.

Add and Remove Separators

Separators are vertical bars that set off tools, enabling you to group them visually. You can add or remove a separator in any of three ways:

- Right-click on a tool's preview and select Show Separator, which toggles its separator on and off.
- Check or clear the check box **Separator** to the left in the tool's property pane.
- Change the Separator property of the tool from the Property Inspector

After adding a separator, that separator appears in the **Toolbar Layout** to the left of the tool. The separator is not a distinct object or icon; it is a property of the tool.

Move Tools

You can reorder tools on the toolbar in two ways:

- Drag a tool to a new position.
- Select a tool in the toolbar and click one of the arrow buttons below the right side of the toolbar.

If a tool has a separator to its left, the separator moves with the tool.

Remove Tools

You can remove tools from the toolbar in three ways:

- Select a tool and press the **Delete** key.
- Select a tool and click the **Delete** button on the GUI.
- · Right-click a tool and select **Delete** from the context menu.

You cannot undo any of these actions.

Edit a Tool's Properties

You edit the appearance and behavior of the currently selected tool using the **Tool Properties** pane, which includes controls for setting the most commonly used tool properties:

- CData The tool's icon
- · Tag The internal name for the tool
- Enable Whether users can click the tool
- Separator A bar to the left of the icon for setting off and grouping tools
- · Clicked Callback The function called when users click the tool
- Off Callback (uitoggletool only) The function called when the tool is put in the off state
- On Callback (uitoggletool only) The function called when the tool is put in the on state

See "Write Callbacks Using the GUIDE Workflow" on page 8-2 for details on programming the tool callbacks. You can also access these and other properties of the selected tool with the Property Inspector. To open the Property Inspector, click the **More Properties** button on the **Tool Properties** pane.

Edit Tool Icons

To edit a selected toolbar icon, click the **Edit** button in the **Tool Properties** pane, next to **CData (icon)** or right-click the **Toolbar Layout** and select **Edit Icon** from the

context menu. The Icon Editor opens with the tool's CData loaded into it. For information about editing icons, see "Use the Icon Editor" on page 6-116.

Edit Toolbar Properties

If you click an empty part of the toolbar or click the **Toolbar Properties** tab, you can edit two of its properties:

- Tag The internal name for the toolbar
- · Visible Whether the toolbar is displayed in your GUI

The Tag property is initially set to uitoolbar1. The Visible property is set to on. When on, the Visible property causes the toolbar to be displayed on the GUI regardless of the setting of the figure's Toolbar property. If you want to toggle a custom toolbar as you can built-in ones (from the View menu), you can create a menu item, a check box, or other control to control its Visible property.

To access nearly all the properties for the toolbar in the Property Inspector, click **More Properties**.

Test Your Toolbar

To try out your toolbar, click the **Run** button in the Layout Editor. The software asks if you want to save changes to its .fig file first.

Remove a Toolbar

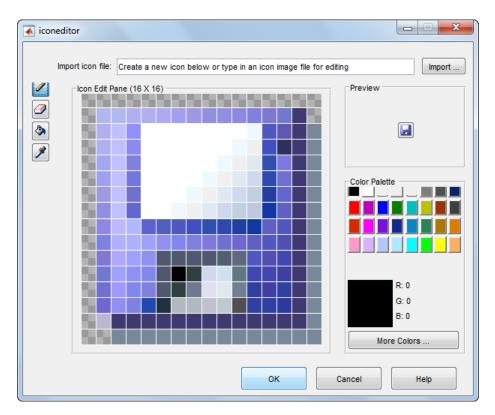
You can remove a toolbar completely—destroying it—from the Toolbar Editor, leaving your GUI without a toolbar (other than the figure toolbar, which is not visible by default). The are two ways to remove a toolbar:

- · Click the **Remove** button in the right end of the toolbar.
- Right-click a blank area on the toolbar and select Remove Toolbar from the context menu.

If you remove all the individual tools in the ways shown in "Remove Tools" on page 6-114 without removing the toolbar itself, your GUI will contain an empty toolbar.

Close the Toolbar Editor

You can close the Toolbar Editor window in two ways:


· Press the **OK** button.

Click the Close box in the title bar.

When you close the Toolbar Editor, the current state of your toolbar is saved with the GUI you are editing. You do not see the toolbar in the Layout Editor; you need to run the GUI to see or use it.

Editing Tool Icons

GUIDE includes its own Icon Editor, a GUI for creating and modifying icons such as icons on toolbars. You can access this editor only from the Toolbar Editor. This figure shows the Icon Editor loaded with a standard Save icon.

Use the Icon Editor

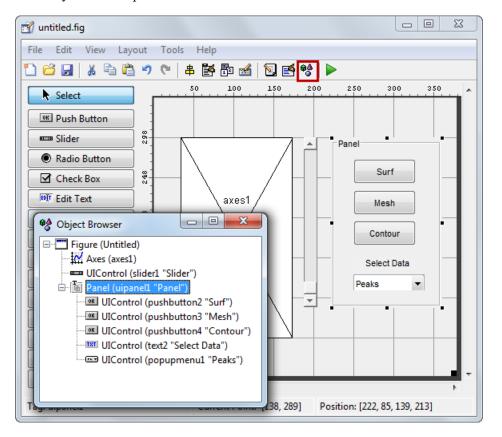
The Icon Editor GUI includes the following components:

- Icon file name The icon image file to be loaded for editing
- Import button Opens a file dialog to select an existing icon file for editing
- · Drawing tools A group of four tools on the left side for editing icons
 - Pencil tool Color icon pixels by clicking or dragging
 - Eraser tool Erase pixels to be transparent by clicking or dragging
 - Paint bucket tool Flood regions of same-color pixels with the current color
 - · Pick color tool Click a pixel or color palette swatch to define the current color
- Icon Edit pane A n-by-m grid where you color an icon
- Preview pane A button with a preview of current state of the icon
- · Color Palette Swatches of color that the pencil and paint tools can use
- More Colors button Opens the Colors dialog box for choosing and defining colors
- **OK** button Dismisses the GUI and returns the icon in its current state
- · Cancel button Closes the GUI without returning the icon

To work with the Icon Editor,

- 1 Open the Icon Editor for a selected tool's icon.
- **2** Using the Pencil tool, color the squares in the grid:
 - Click a color cell in the palette.
 - That color appears in the **Color Palette** preview swatch.
 - · Click in specific squares of the grid to transfer the selected color to those squares.
 - Hold down the left mouse button and drag the mouse over the grid to transfer the selected color to the squares that you touch.
 - Change a color by writing over it with another color.
- **3** Using the Eraser tool, erase the color in some squares
 - · Click the Eraser button on the palette.
 - Click in specific squares to erase those squares.
 - Click and drag the mouse to erase the squares that you touch.
 - · Click a another drawing tool to disable the Eraser.
- 4 Click **OK** to close the GUI and return the icon you created or click **Cancel** to close the GUI without modifying the selected tool's icon.

The Toolbar Editor and Icon Editor are shown together below.



View the GUIDE GUI Object Hierarchy

The Object Browser displays a hierarchical list of the objects in the figure, including both components and menus. As you lay out your GUI, check the object hierarchy periodically, especially if your GUI contains menus, panes, or button groups. Open it from **View** >

Object Browser or by click the Object Browser icon on the GUIDE toolbar.

The following illustration shows a figure object and its child objects. It also shows the child objects of a uipanel.

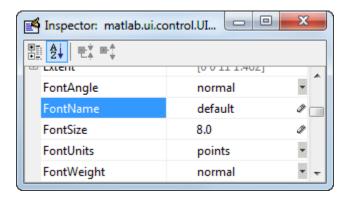
To determine a component's place in the hierarchy, select it in the Layout Editor. It is automatically selected in the Object Browser. Similarly, if you select an object in the Object Browser, it is automatically selected in the Layout Editor.

Design GUIDE GUIs for Cross-Platform Compatibility

In this section...

"Default System Font" on page 6-120

"Standard Background Color" on page 6-121


"Cross-Platform Compatible Units" on page 6-121

Default System Font

By default, user interface controls (uicontrols) use the default font for the platform on which they are running. For example, when displaying your GUI on PCs, uicontrols use MS San Serif. When your GUI runs on a different platform, it uses that computer's default font. This provides a consistent look with respect to your GUI and other application GUIs.

If you have set the FontName property to a named font and want to return to the default value, you can set the property to the string default. This ensures that the software uses the system default at run-time.

You can use the Property Inspector to set this property:

As an alternative, use the set command to set the property in the GUI code file. For example, if there is a push button in your GUI and its handle is stored in the pushbutton1 field of the handles structure, then the statement

```
set(handles.pushbutton1, 'FontName', 'default')
```

sets the FontName property to use the system default.

Specify a Fixed-Width Font

If you want to use a fixed-width font for a user interface control, set its FontName property to the string fixedwidth. This special identifier ensures that your GUI uses the standard fixed-width font for the target platform.

You can find the name of the fixed-width font that is used on a given platform by querying the root FixedWidthFontName property.

```
get(groot, 'FixedWidthFontName')
```

Use a Specific Font Name

You can specify an actual font name (such as Times or Courier) for the FontName property. However, doing so may cause your GUI to not look as you intended when run on a different computer. If the target computer does not have the specified font, it will substitute another font that may not look good in your GUI or may not be the standard font used for GUIs on that system. Also, different versions of the same named font may have different size requirements for a given set of characters.

Standard Background Color

The default component background color is the standard system background color on which the GUI is running. This color varies on different computer systems, e.g., the standard shade of gray on the PC differs from that on UNIX system, and may not match the default GUI background color.

If you use the default component background color, you can use that same color as the background color for your GUI. This provides a consistent look with respect to your GUI and other application GUIs. To do this in GUIDE, check **Options > Use system color scheme for background** on the Layout Editor **Tools** menu.

Note This option is available only if you first select the **Generate FIG-file and MATLAB File** option.

Cross-Platform Compatible Units

Cross-platform compatible GUIs should look correct on computers having different screen sizes and resolutions. Since the size of a pixel can vary on different computer displays, using the default figure Units of pixels does not produce a GUI that looks the same on all platforms.

For this reason, GUIDE defaults the Units property for the figure to characters.

System-Dependent Units

Character units are defined by characters from the default system font. The width of a character unit equals the width of the letter x in the system font. The height of a character unit is the distance between the baselines of two lines of text. Note that character units are not square.

Units and Resize Behavior

If you set your GUI's resize behavior from the GUI Options dialog box, GUIDE automatically sets the units for the GUI's components in a way that maintains the intended look and feel across platforms. To specify the resize behavior option, select **Tools > GUI Options**, and select an item from the **Resize behavior** pop-up menu:

- If you choose Non-resizable, GUIDE defaults the component units to characters.
- · If you choose **Proportional**, GUIDE defaults the component units to normalized.
- If you choose **Other (Use SizeChangedFcn)**, GUIDE defaults the component units to **characters**. However, you must provide a SizeChangedFcn callback to customize the GUI's resize behavior.

The **Non-resizable** and **Proportional** options enable your GUI to automatically adjust the size and relative spacing of components when the GUI displays on different computers.

Note GUIDE does not automatically adjust component units if you modify the figure's Resize property programmatically or in the Property Inspector.

At times, it might be convenient to use a more familiar unit of measure, e.g., inches or centimeters, when you are laying out the GUI. However, to preserve the look of your GUI on different computers, remember to change the figure Units property back to characters, and the components' Units properties to characters (nonresizable GUIs) or normalized (resizable GUIs) before you save the GUI.

GUI Design References

Many Web sites such as the following provide guidelines for designing GUIs:

- AskTog Essays on good design and a list of First Principles for good user interface design. The author, Bruce Tognazzini, is a well-respected user interface designer. http://www.asktog.com/basics/firstPrinciples.html.
- GUI Design Handbook A detailed guide to the use of GUI controls. http://www.fast-consulting.com/desktop.htm.
- Usability Glossary An extensive glossary of terms related to GUI design, usability, and related topics. http://www.usabilityfirst.com/glossary/main.cgi.
- UsabilityNet Covers design principles, user-centered design, and other usability and design-related topics. http://www.usabilitynet.org/management/b_design.htm.

Save and Run a GUIDE GUI

- "Save a GUIDE GUI" on page 7-2
- "Create a Programmatic GUI Code File from GUIDE GUI Files" on page 7-4
- "Rename GUIDE GUIs and GUI Files" on page 7-5

Save a GUIDE GUI

In this section...

"Save a GUI" on page 7-2

"Create a Backward Compatible GUIDE Fig-File" on page 7-2

"Append New Callbacks to an Existing GUIDE Code File" on page 7-3

Save a GUI

To save a GUI in GUIDE, use any of the following methods:

- * On the Layout Editor toolbar, click Save or Run ▶.
- · On the Layout Editor menu bar, select the FileSave or Save as options

Note: GUIDE GUIs cannot run correctly from a private folder.

Create a Backward Compatible GUIDE Fig-File

GUI FIG-files that are created or modified with MATLAB 7.0 or a later MATLAB version, are not automatically compatible with Version 6.5 and earlier versions.

To make a FIG-file (which is a kind of MAT-file) backward compatible:

- 1 From the Layout editor, select **File > Preferences**.
- 2 Select MATLAB > General > MAT-Files.
- 3 Select MATLAB Version 5 or later (save -v6)

Because Button groups, panels and tables were introduced in MATLAB 7, you should not use them in GUIs that you expect to run in earlier MATLAB versions.

Note The **-v6** option is obsolete and will be removed in a future version of MATLAB

Append New Callbacks to an Existing GUIDE Code File

If you save a GUIDE gui to an existing file, GUIDE displays a dialog box that asks you if you want to replace the existing FIG-file. If you click **Yes**, GUIDE displays a dialog that asks if you want to replace the existing code file or append to it. The most common choice is **Replace**.

If you choose **Append**, GUIDE adds callbacks to the existing code file for components in the current layout that are not present within it. Before you append the new components, ensure that their Tag properties do not duplicate Tag values that appear in callback function names in the existing code file.

Create a Programmatic GUI Code File from GUIDE GUI Files

You can export a GUI (FIG-file and code file) to a single programmatic code file. The code recreates the GUI layout programmatically. When a user runs this file, it generates the GUI figure; no preexisting FIG-file is required.

To export a GUI that is open in GUIDE, select **File > Export**.

If the GUI contains binary data (for example, icons or UserData), exporting it sometimes also generates a MAT-file containing that data. When a user runs the exported GUI, it reads the MAT-file and loads the data it contains. The MAT-file must be on the MATLAB search path at that time.

Rename GUIDE GUIs and GUI Files

To rename a GUI, rename the GUI FIG-file using **Save As** from the Layout Editor **File** menu. GUIDE renames both the FIG-file and the GUI code file, updates any callback properties that contain the old name to use the new name, and updates all instances of the file name in the body of the code.

Note: Do not rename GUI files by changing their names outside of GUIDE or the GUI will not function properly.

Programming a GUIDE GUI

- "Write Callbacks Using the GUIDE Workflow" on page 8-2
- "Initialize a GUIDE GUI" on page 8-7
- "Callbacks for Specific Components" on page 8-12
- "Examples of GUIDE GUIs" on page 8-30

Write Callbacks Using the GUIDE Workflow

In this section...

"Callbacks for Different User Actions" on page 8-2

"GUIDE-Generated Callback Functions and Property Values" on page 8-4

"GUIDE Callback Syntax" on page 8-5

"Renaming and Removing GUIDE-Generated Callbacks" on page 8-5

Callbacks for Different User Actions

UI and graphics components have certain properties that you can associate with specific callback functions. Each of these properties corresponds to a specific user action. For example, a uicontrol has a property called Callback. You can set the value of this property to be a handle to a callback function, an anonymous function, or a string containing MATLAB commands. Setting this property makes your GUI respond when the user interacts with the uicontrol. If the Callback property has no specified value, then nothing happens when the end user interacts with the uicontrol.

This table lists the callback properties that are available, the user actions that trigger the callback function, and the most common UI and graphics components that use them.

Callback Property	User Action	Components That Use This Property
ButtonDownFcn	End user presses a mouse button while the pointer is on the component or figure.	axes, figure, uibuttongroup, uicontrol, uipanel, uitable,
Callback	End user triggers the component. For example: selecting a menu item, moving a slider, or pressing a push button.	uicontextmenu, uicontrol, uimenu
CellEditCallback	End user edits a value in a table whose cells are editable.	uitable
CellSelectionCall	End user selects cells in a table.	uitable
ClickedCallback	End user clicks the push tool or toggle tool with the left mouse button.	uitoggletool, uipushtool
CloseRequestFcn	The figure closes.	figure

Callback Property	User Action	Components That Use This Property
CreateFcn	Callback executes when MATLAB creates the object, but before it is displayed.	axes, figure, uibuttongroup, uicontextmenu, uicontrol, uimenu, uipushtool, uipanel, uitable, uitoggletool, uitoolbar
DeleteFcn	Callback executes just before MATLAB deletes the figure.	axes, figure, uibuttongroup, uicontextmenu, uicontrol, uimenu, uipushtool, uipanel, uitable, uitoggletool, uitoolbar
KeyPressFcn	End user presses a keyboard key while the pointer is on the object.	figure, uicontrol, uipanel, uipushtool, uitable, uitoolbar
KeyReleaseFcn	End user releases a keyboard key while the pointer is on the object.	figure, uicontrol, uitable
OffCallback	Executes when the State of a toggle tool changes to 'off'.	uitoggletool
OnCallback	Executes when the State of a toggle tool changes to 'on'.	uitoggletool
SizeChangedFcn	End user resizes a button group, figure, or panel whose Resize property is 'on'.	figure, uipanel, uibuttongroup
SelectionChange	End user selects a different radio button or toggle button within a button group.	uibuttongroup
WindowButtonDo	End user presses a mouse button while the pointer is in the figure window.	figure
WindowButtonM	End user moves the pointer within the figure window.	figure
WindowButtonUl	End user releases a mouse button.	figure
WindowKeyPress	End user presses a key while the pointer is on the figure or any of its child objects.	figure

Callback Property	User Action	Components That Use This Property
	End user releases a key while the pointer is on the figure or any of its child objects.	figure
WindowScrollWh	End user turns the mouse wheel while the pointer is on the figure.	figure

GUIDE-Generated Callback Functions and Property Values

How GUIDE Manages Callback Functions and Properties

After you add a uicontrol, uimenu, or uicontextmenu component to your GUI, but before you save it, GUIDE populates the Callback property with the value, %automatic. This value indicates that GUIDE will generate a name for the callback function.

When you save your GUI, GUIDE adds an empty callback function definition to your GUI code file, and it sets the control's Callback property to be an anonymous function. This function definition is an example of a GUIDE-generated callback function for a push button.

end

If you save this GUI with the name, mygui, then GUIDE sets the push button's Callback property to the following value:

@(hObject, eventdata) mygui('pushbutton1_Callback', hObject, eventdata, guidata(hObject)) This is an anonymous function that serves as a reference to the function, pushbutton1_Callback. This anonymous function has four input arguments. The first argument is a string containing the name of the callback function. The last three arguments are provided by Handle Graphics®, and are discussed in the section, "GUIDE Callback Syntax" on page 8-5.

Note: GUIDE does not automatically generate callback functions for other UI components, such as tables, panels, or button groups. If you want any of these components to execute a callback function, then you must create the callback by right-clicking on the component in the layout, and selecting an item under **View Callbacks** in the context menu.

GUIDE Callback Syntax

All callbacks in a GUIDE GUI must accept at least three input arguments:

- hObject Handle to the UI component that triggered the callback.
- eventdata A variable that contains detailed information about specific mouse or keyboard actions.
- handles A struct that contains handles to all the objects in the GUI. GUIDE uses the guidata function to store and maintain this structure.

For the callback function to accept additional arguments, you must put the additional arguments at the end of the argument list in the function definition.

The eventdata Argument

The eventdata argument provides detailed information to certain callback functions. For example, if the end user triggers the KeyPressFcn, then MATLAB provides information regarding the specific key (or combination of keys) that the end user pressed. If eventdata is not available to the callback function, then MATLAB passes it as an empty array. The following table lists the callbacks and components that use eventdata.

Callback Property Name	Component
WindowKeyPressFcn WindowKeyReleaseFcn WindowScrollWheel	figure
KeyPressFcn	figure, uicontrol, uitable
KeyReleaseFcn	figure, uicontrol, uitable
SelectionChangedFcn	uibuttongroup
CellEditCallback CellSelectionCallback	uitable

Renaming and Removing GUIDE-Generated Callbacks

Renaming Callbacks

GUIDE creates the name of a callback function by combining the component's Tag property and the callback property name. If you change the component's Tag value, then GUIDE changes the callback's name the next time you save the GUI.

If you decide to change the Tag value after saving the GUI, then GUIDE updates the following items (assuming that all components have unique Tag values).

- Component's callback function definition
- Component's callback property value
- References in the code file to the corresponding field in the handles structure

To rename a callback function without changing the component's Tag property:

- 1 Change the name in the callback function definition.
- **2** Update the component's callback property by changing the first argument passed to the anonymous function. For example, the original callback property for a push button might look like this:

```
@(hObject,eventdata)mygui('pushbutton1_Callback',...
hObject,eventdata,guidata(hObject))
```

In this example, you must change the string, 'pushbutton1_Callback' to the new function name.

3 Change all other references to the old function name to the new function name in the GUI code file.

Deleting Callbacks

You can delete a callback function when you want to remove or change the function that executes when the end user performs a specific action. To delete a callback function:

- 1 Search and replace all instances that refer to the callback function in your code.
- **2** Open the GUI in GUIDE and replace all instances that refer to the callback function in the Property Inspector.
- **3** Delete the callback function.

More About

"Anonymous Functions"

Initialize a GUIDE GUI

```
In this section...

"Opening Function" on page 8-7

"Output Function" on page 8-10
```

Opening Function

The opening function is the first callback in every GUI code file. It is executed just before the GUI is made visible to the user, but after all the components have been created, i.e., after the components' CreateFcn callbacks, if any, have been run.

You can use the opening function to perform your initialization tasks before the user has access to the GUI. For example, you can use it to create data or to read data from an external source. GUI command-line arguments are passed to the opening function.

Function Naming and Template

GUIDE names the opening function by appending _OpeningFcn to the name of the GUI. This is an example of an opening function template as it might appear in the mygui code file.

```
% --- Executes just before mygui is made visible.
function mygui OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject
            handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles
            structure with handles and user data (see GUIDATA)
            command line arguments to mygui (see VARARGIN)
% varargin
% Choose default command line output for mygui
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
% UIWAIT makes mygui wait for user response (see UIRESUME)
% uiwait(handles.mygui);
```

Input Arguments

The opening function has four input arguments hobject, eventdata, handles, and varargin. The first three are the same as described in "GUIDE Callback Syntax"

on page 8-5. the last argument, varargin, enables you to pass arguments from the command line to the opening function. The opening function can take actions with them (for example, setting property values) and also make the arguments available to callbacks by adding them to the handles structure.

For more information about using varargin, see the varargin reference page and "Support Variable Number of Inputs".

Passing Object Properties to an Opening Function

You can pass a property name/value pair for any component as two successive command line arguments and set that value in the opening function. If you are setting a figure property, GUIDE handles this automatically. For example, my_gui('Position', [71.8 44.9 74.8 19.7]) opens the GUI at the specified position, since Position is a valid figure property (in character units, the default).

You can define new names for properties or combinations of them. For example, you can make your GUI accept an alias for a figure property as a convenience to the user. For example, you might want the user to be able to open the GUI with a Title argument instead of calling it Name, which is the property that specifies the name on the GUI's title bar. To do this, you must provide code in its OpeningFcn to set theName figure property. The following example illustrates how to do this.

If you pass an input argument that is not a valid figure property, your code must recognize its name and use the name/value pair to set the appropriate property on the correct object. Otherwise, the argument is ignored. The following example is from the opening function for the Modal Question Dialog GUI template, available from the GUIDE Quick Start dialog box. The added code opens the modal dialog with a message, specified from the command line or by another GUI that calls this one. For example,

```
mygui('String','Do you want to exit?')
```

displays the text 'Do you want to exit?' on the GUI. To do this, you need to customize the opening function because 'String' is not a valid figure property, it is a static text property. The Modal Question Dialog template file contains the following code, which

- Uses the nargin function to determine the number of user-specified arguments (which do not include hObject, eventdata, and handles)
- Parses varargin to obtain property name/value pairs, converting each name string to lower case

- Handles the case where the argument 'title' is used as an alias for the figure Name property
- Handles the case 'string', assigning the following value as a String property to the appropriate static text object

```
function modalgui OpeningFcn(hObject, eventdata, handles, varargin)
% Insert custom Title and Text if specified by the user
% Hint: when choosing keywords, be sure they are not easily confused
% with existing figure properties. See the output of set(figure) for
% a list of figure properties.
if(nargin > 3)
    for index = 1:2:(nargin-3),
        if nargin-3==index, break, end
        switch lower(varargin{index})
        case 'title'
          set(hObject, 'Name', varargin{index+1});
         case 'string'
          set(handles.text1, 'String', varargin{index+1});
        end
    end
end
```

The if block loops through the odd elements of varargin checking for property names or aliases, and the case blocks assign the following (even) varargin element as a value to the appropriate property of the figure or one of its components. You can add more cases to handle additional property assignments that you want the opening function to perform.

Initial Template Code

Initially, the input function template contains these lines of code:

- handles.output = hObject adds a new element, output, to the handles structure and assigns it the value of the input argument hObject, which is the handle of the figure, i.e., the handle of the GUI. This handle is used later by the output function.
- guidata(hObject, handles) saves the handles structure. You must use the guidata function to save any changes that you make to the handles structure. It is not sufficient just to set the value of a handles field.
- uiwait(handles.mygui), initially commented out, blocks GUI execution until uiresume is called or the GUI is deleted. Note that uiwait allows the user access to

other MATLAB windows. Remove the comment symbol for this statement if you want the GUI to be blocking when it opens.

Output Function

The output function returns, to the command line, outputs that are generated during its execution. It is executed when the opening function returns control and before control returns to the command line. This means that you must generate the outputs in the opening function, or call uiwait in the opening function to pause its execution while other callbacks generate outputs.

Function Naming and Template

GUIDE names the output function by appending _OutputFcn to the name of the GUI. This is an example of an output function template as it might appear in the mygui code file.

Input Arguments

The output function has three input arguments: hObject, eventdata, and handles. They are the same as described in "GUIDE Callback Syntax" on page 8-5.

Output Arguments

The output function has one output argument, varargout, which it returns to the command line. By default, the output function assigns handles.output to varargout. So the default output is the handle to the GUI, which was assigned to handles.output in the opening function.

You can change the output by taking one of these actions:

• Change the value of handles.output. It can be any valid MATLAB value including a structure or cell array.

• Add output arguments to varargout. The varargout argument is a cell array. It can contain any number of output arguments. By default, GUIDE creates just one output argument, handles.output. To create an additional output argument, create a new field in the handles structure and add it to varargout using a command similar to

varargout{2} = handles.second_output;

Callbacks for Specific Components

Coding the behavior of a UI component involves specific tasks that are unique to the type of component you are working with. This topic contains simple examples of callbacks for each type of component. The examples are written for GUIDE unless otherwise stated. For general information about coding callbacks, see "Write Callbacks Using the GUIDE Workflow" or "Write Callbacks Using the Programmatic Workflow".

In this section...

"How to Use the Example Code" on page 8-12

"Push Button" on page 8-13

"Toggle Button" on page 8-13

"Radio Button" on page 8-14

"Check Box" on page 8-14

"Edit Text" on page 8-15

"Slider" on page 8-16

"List Box" on page 8-17

"Pop-Up Menu" on page 8-19

"Panel" on page 8-21

"Button Group" on page 8-22

"Menu Item" on page 8-23

"Table" on page 8-26

"Axes" on page 8-27

How to Use the Example Code

If you are working in GUIDE, then right-click on the component in your layout and select the appropriate callback property from the **View Callbacks** menu. Doing so creates an empty callback function that is automatically associated with the component. The specific function name that GUIDE creates is based on the component's **Tag** property, so your function name might be slightly different than the function name in the example code. Do not change the function name that GUIDE creates in your code. To use the example code in your GUI, copy the code from the example's function body into your function's body.

If you are creating a GUI programmatically, (without GUIDE), then you can adapt the example code into your GUI. To adapt an example into your code, omit the third input argument, handles, from the function definition. Also, replace any references to the handles array with the appropriate object handle. To associate the callback function with the component, set the component's callback property to be a handle to the callback function. For example, this command creates a push button component and sets the Callback property to be a handle to the function, pushbutton1_callback.

pb =

```
uicontrol('Style','pushbutton','Callback',@pushbutton1_Callback);
```

Push Button

This code is an example of a push button callback function in GUIDE. Associate this function with the push button Callback property to make it execute when the end user clicks on the push button.

The first line of code, display('Goodbye'), displays the string, 'Goodbye', in the Command Window. The next line gets a handle to the GUI window using gcf and then closes it.

Toggle Button

This code is an example of an example of a toggle button callback function in GUIDE. Associate this function with the toggle button Callback property to make it execute when the end user clicks on the toggle button.

```
function togglebutton1_Callback(hObject,eventdata,handles)
% hObject    handle to togglebutton1 (see GCBO)
% eventdata    reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of togglebutton1
button_state = get(hObject,'Value');
if button_state == get(hObject,'Max')
    display('down');
```

```
elseif button_state == get(hObject, 'Min')
display('up');
end
```

The toggle button's Value property matches the Min property when the toggle button is up. The Value changes to the Max value when the toggle button is depressed. This callback function gets the toggle button's Value property and then compares it with the Max and Min properties. If the button is depressed, then the function displays 'down' in the Command Window. If the button is up, then the function displays 'up'.

Radio Button

This code is an example of a radio button callback function in GUIDE. Associate this function with the radio button Callback property to make it execute when the end user clicks on the radio button.

The radio button's Value property matches the Min property when the radio button is not selected. The Value changes to the Max value when the radio button is selected. This callback function gets the radio button's Value property and then compares it with the Max and Min properties. If the button is selected, then the function displays 'Selected' in the Command Window. If the button is not selected, then the function displays 'Not selected'.

Note Use a button group to manage exclusive selection behavior for radio buttons. See "Button Group" on page 8-22 for more information.

Check Box

This code is an example of a check box callback function in GUIDE. Associate this function with the check box Callback property to make it execute when the end user clicks on the check box.

The check box's Value property matches the Min property when the check box is not selected. The Value changes to the Max value when the check box is selected. This callback function gets the check box's Value property and then compares it with the Max and Min properties. If the check box is selected, the function displays 'Selected' in the Command Window. If the check box is not selected, it displays 'Not selected'.

Edit Text

This code is an example of an edit text box callback function in GUIDE. Associate this function with the edit text box Callback property to make it execute when the end user types characters in the text box.

When the end user types characters inside the edit text box and presses the **Enter** key, the callback function retrieves the string value and displays it in the Command Window.

To enable users to enter multiple lines of text, set the Max and Min properties to numeric values that satisfy Max - Min > 1. For example, set Max to 2, and Min to 0 to satisfy the inequality. In this case, the callback function triggers when the end user clicks on an area in the GUI that is outside of the edit text box.

Retrieve Numeric Values

If you want to interpret the contents of an edit text box as numeric values, then convert the characters to numbers using the str2double function. The str2double function returns NaN for nonnumeric input.

This code is an example of an edit text box callback function that interprets the user's input as numeric values.

```
function edit1_Callback(hObject, eventdata, handles)
% hObject
             handle to edit1 (see GCBO)
             reserved - to be defined in a future version of MATLAB
% eventdata
% handles
             structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of edit1 as text
% str2double(get(h0bject, 'String')) returns contents as a double
input = str2double(get(h0bject, 'string'));
if isnan(input)
  errordlg('You must enter a numeric value', 'Invalid Input', 'modal')
  uicontrol(hObject)
  return
else
  display(input);
end
```

When the end user enters values into the edit text box and presses the **Enter** key, the callback function gets the value of the String property and converts it to a numeric value. Then, it checks to see if the value is NaN (nonnumeric). If the input is NaN, then the callback presents an error dialog box.

Slider

This code is an example of a slider callback function in GUIDE. Associate this function with the slider Callback property to make it execute when the end user moves the slider.

```
function slider1 Callback(hObject, eventdata, handles)
```

```
% hObject handle to slider1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine...
slider_value = get(hObject,'Value');
display(slider value);
```

When the end user moves the slider, the callback function gets the current value of the slider and displays it in the Command Window. By default, the slider's range is [0, 1]. To modify the range, set the slider's Max and Min properties to the maximum and minimum values, respectively.

List Box

Populate Items in the List Box

If you are developing a GUI using GUIDE, use the list box CreateFcn callback to add items to the list box.

This code is an example of a list box CreateFcn callback that populates the list box with the items, Red, Green, and Blue.

If you are developing a GUI programmatically (without GUIDE), then populate the list box when you create it. For example:

```
function mygui()
```

```
figure
uicontrol('Style','Listbox',...
'String',{'Red';'Green';'Blue'},...
'Position',[40 70 80 50]);
end
```

Change the Selected Item

When the end user selects a list box item, the list box's Value property changes to a number that corresponds to the item's position in the list. For example, a value of 1 corresponds to the first item in the list. If you want to change the selection in your GUI code, then change the Value property to another number between 1 and the number of items in the list.

For example, you can use the handles structure in GUIDE to access the list box and change the Value property:

```
set(handles.listbox1, 'Value',2)
```

The first argument, handles.listbox1, might be different in your code, depending on the value of the list box Tag property.

Write the Callback Function

This code is an example of a list box callback function in GUIDE. Associate this function with the list box Callback property to make it execute when a selects an item in the list box.

```
function listbox1_Callback(hObject, eventdata, handles)
% hObject handle to listbox1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: contents = cellstr(get(hObject,'String')) returns contents
% contents{get(hObject,'Value')} returns selected item from listbox1
items = get(hObject,'String');
index_selected = get(hObject,'Value');
item_selected = items{index_selected};
display(item_selected);
```

When the end user selects an item in the list box, the callback function performs the following tasks:

Gets all the items in the list box and stores them in the variable, items.

- Gets the numeric index of the selected item and stores it in the variable, index selected.
- Gets the string value of the selected item and stores it in the variable, item selected.
- Displays the selected item in the MATLAB Command Window.

The example, "Interactive List Box in a GUIDE GUI" on page 9-46 shows how to populate a list box with directory names.

Pop-Up Menu

Populate Items in the Pop-Up Menu

If you are developing a GUI using GUIDE, use the pop-up menu CreateFcn callback to add items to the pop-up menu.

This code is an example of a pop-up menu CreateFcn callback that populates the menu with the items, Red, Green, and Blue.

```
function popupmenu1_CreateFcn(hObject, eventdata, handles)
% hObject handle to popupmenu1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
% Hint: popupmenu controls usually have a white background on Windows.
if ispc && isequal(get(hObject, 'BackgroundColor'),...
    get(0, 'defaultUicontrolBackgroundColor'))
    set(hObject, 'BackgroundColor', 'white');
end
set(hObject, 'String', {'Red'; 'Green'; 'Blue'});
The last line, set(hObject, 'String', {'Red'; 'Green'; 'Blue'}), populates the contents of the pop-up menu.
```

If you are developing a GUI programmatically (without GUIDE), then populate the popup menu when you create it. For example:

```
function mygui()
  figure
  uicontrol('Style','popupmenu',...
  'String',{'Red';'Green';'Blue'},...
  'Position',[40 70 80 20]);
end
```

Change the Selected Item

When the end user selects an item, the pop-up menu's Value property changes to a number that corresponds to the item's position in the menu. For example, a value of 1 corresponds to the first item in the list. If you want to change the selection in your GUI code, then change the Value property to another number between 1 and the number of items in the menu.

For example, you can use the handles structure in GUIDE to access the pop-up menu and change the Value property:

```
set(handles.popupmenu1, 'Value',2)
```

The first argument, handles.popupmenu1, might be different in your code, depending on the value of the pop-up menu Tag property.

Write the Callback Function

This code is an example of a pop-up menu callback function in GUIDE. Associate this function with the pop-up menu Callback property to make it execute when the end user selects an item from the menu.

```
function popupmenu1_Callback(hObject, eventdata, handles)
% hObject handle to popupmenu1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: contents = cellstr(get(hObject, 'String')) returns contents...
% contents{get(hObject, 'Value')} returns selected item...
items = get(hObject, 'String');
index_selected = get(hObject, 'Value');
item_selected = items{index_selected};
display(item_selected);
```

When the end user selects an item in the pop-up menu, the callback function performs the following tasks:

- Gets all the items in the pop-up menu and stores them in the variable, items.
- Gets the numeric index of the selected item and stores it in the variable, index_selected.
- Gets the string value of the selected item and stores it in the variable, item_selected.
- Displays the selected item in the MATLAB Command Window.

Panel

Make the Panel Respond to Button Clicks

You can create a callback function that executes when the end user right-clicks or left-clicks on the panel. If you are working in GUIDE, then right-click the panel in the layout and select **View Callbacks** > **ButtonDownFcn** to create the callback function.

This code is an example of a ButtonDownFcn callback in GUIDE.

```
function uipanel1_ButtonDownFcn(hObject, eventdata, handles)
% hObject    handle to uipanel1 (see GCBO)
% eventdata    reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
display('Mouse button was pressed');
When the end user clicks on the panel, this function displays the text, 'Mouse button was pressed', in the Command Window.
```

Resize the Window and Panel

By default, GUIDE GUIs cannot be resized, but you can override this behavior by selecting **Tools** > **GUI Options** and setting **Resize behavior** to **Proportional**.

Programmatic GUIs can be resized by default, and you can change this behavior by setting the Resize property of the figure on or off.

When your GUI is resizable, the position of components in your GUI adjust as the user resizes the window. If you have a panel in your GUI, then the panel's size will change with the window's size. Use the panel's SizeChangedFcn callback to make your GUI perform specific tasks when the panel resizes.

This code is an example of a panel's SizeChangedFcn callback in a GUIDE GUI. When the end user resizes the window, this function modifies the font size of static text inside the panel.

```
set(hObject, 'Units', 'normalized');
newFontSize = 10 * panelHeight / 115;
texth = findobj('Tag', 'text1');
set(texth, 'FontSize', newFontSize);
```

If your GUI has nested panels, then they will resize from the inside-out (in child-to-parent order).

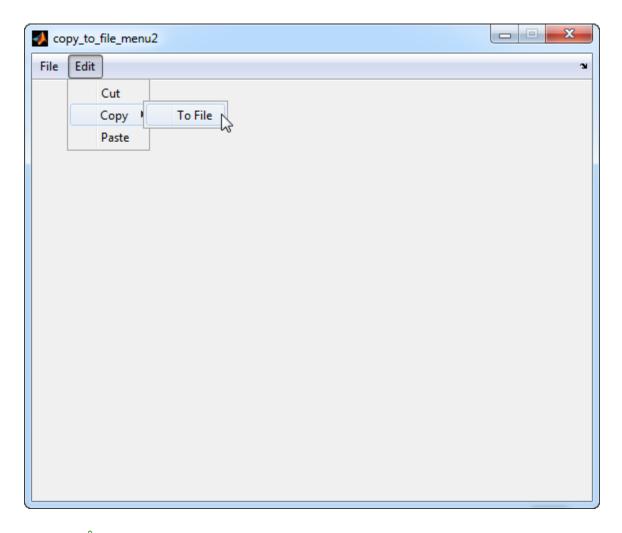
Note: To make the text inside a panel resize automatically, set the fontUnits property to 'normalized'.

Button Group

Button groups are similar to panels, but they also manage exclusive selection of radio buttons and toggle buttons. When a button group contains multiple radio buttons or toggle buttons, the button group allows the end user to select only one of them.

Do not code callbacks for the individual buttons that are inside a button group. Instead, use the button group's SelectionChangedFcn callback to respond when the end user selects a button.

This code is an example of a button group SelectionChangedFcn callback that manages two radio buttons and two toggle buttons.


```
function uibuttongroup1 SelectionChangedFcn(hObject, eventdata, handles)
             handle to the selected object in uibuttongroup1
% eventdata structure with the following fields
% EventName: string 'SelectionChanged' (read only)
% OldValue: handle of the previously selected object or empty
% NewValue: handle of the currently selected object
             structure with handles and user data (see GUIDATA)
switch get(eventdata.NewValue, 'Tag') % Get Tag of selected object.
    case 'radiobutton1'
        display('Radio button 1');
    case 'radiobutton2'
        display('Radio button 2');
    case 'togglebutton1'
        display('Toggle button 1');
    case 'togglebutton2'
        display('Toggle button 2');
end
```

When the end user selects a radio button or toggle button in the button group, this function determines which button the user selected based on the button's Tag property. Then, it executes the code inside the appropriate case.

Note: The button group's **SelectedObject** property contains a handle to the button that user selected. You can use this property elsewhere in your GUI code to determine which button the user selected.

Menu Item

The code in this section contains example callback functions that respond when the end user selects **Edit** > **Copy** > **To File** in this menu.


```
function edit_menu_Callback(hObject, eventdata, handles)
% hObject handle to edit_menu (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
display('Edit menu selected');
%
function copy_menu_item_Callback(hObject, eventdata, handles)
```

The callback functions trigger in response to these actions:

- When the end user selects the Edit menu, the edit_menu_Callback function displays the text, 'Edit menu selected', in the MATLAB Command Window.
- When the end user hovers the mouse over the Copy menu item, the copy_menu_item_Callback function displays the text, 'Copy menu item selected', in the MATLAB Command Window.
- When the end user clicks and releases the mouse button on the To File menu item, the tofile_menu_item_Callback function displays a dialog box that prompts the end user to select a destination folder and file name.

The tofile_menu_item_Callback function calls the uiputfile function to prompt the end user to supply a destination file and folder. If you want to create a menu item that prompts the user for an existing file, for example, if your GUI has an **Open File** menu item, then use the uigetfile function.

When you create a cascading menu like this one, the intermediate menu items trigger when the mouse hovers over them. The final, terminating, menu item triggers when the mouse button releases over the menu item.

How to Update a Menu Item Check

You can add a check mark next to a menu item to indicate that an option is enabled. In GUIDE, you can select **Check mark this item** in the Menu Editor to make the menu item checked by default. Each time the end user selects the menu item, the callback function can turn the check on or off.

This code shows how to change the check mark next to a menu item.

```
if strcmp(get(hObject, 'Checked'), 'on')
    set(hObject, 'Checked', 'off');
else
    set(hObject, 'Checked', 'on');
end
```

The strcmp function compares two strings and returns true when they match. In this case, it returns true when the menu item's Checked property matches the string, 'on'.

See "Create Menus for GUIDE GUIS" for more information about creating menu items in GUIDE. See "Create Menus for Programmatic GUIS" for more information about creating menu items programmatically.

Table

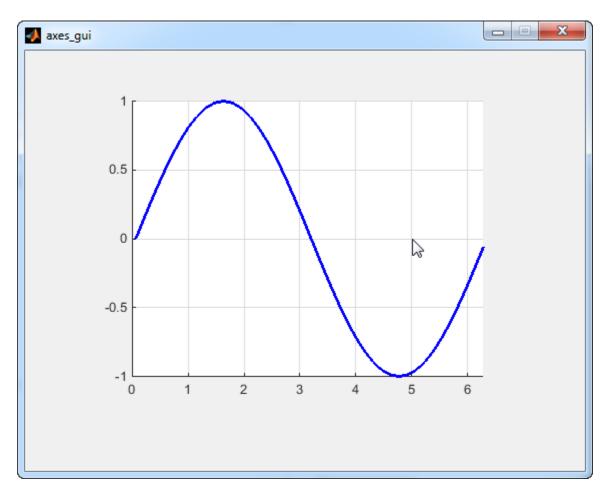
This code is an example of the table callback function, CellSelectionCallback. Associate this function with the table CellSelectionCallback property to make it execute when the end user selects cells in the table.

```
function uitable1_CellSelectionCallback(hObject, eventdata, handles)
% hObject handle to uitable1 (see GCBO)
% eventdata structure with the following fields
% Indices: row and column indices of the cell(s) currently selected
% handles structure with handles and user data (see GUIDATA)
data = get(hObject, 'Data');
indices = eventdata.Indices;
r = indices(:,1);
c = indices(:,2);
linear_index = sub2ind(size(data),r,c);
selected_vals = data(linear_index);
selection_sum = sum(sum(selected_vals))
```

When the end user selects cells in the table, this function performs the following tasks:

- Gets all the values in the table and stores them in the variable. data.
- Gets the indices of the selected cells. These indices correspond to the rows and columns in data.
- Converts the row and column indices into linear indices. The linear indices allow you to select multiple elements in an array using one command.
- Gets the values that the end user selected and stores them in the variable, selected_vals.

Sums all the selected values and displays the result in the Command Window.


This code is an example of the table callback function, CellEditCallback. Associate this function with the table CellEditCallback property to make it execute when the end user edits a cell in the table.

```
function uitable1_CellEditCallback(hObject, eventdata, handles)
% hObject handle to uitable1 (see GCBO)
% eventdata structure with the following fields
% Indices: row and column indices of the cell(s) edited
% PreviousData: previous data for the cell(s) edited
% EditData: string(s) entered by the user
% NewData: EditData or its converted form set on the Data property.
% Empty if Data was not changed
% Error: error string when failed to convert EditData
data = get(hObject, 'Data');
data sum = sum(sum(data))
```

When the end user finishes editing a table cell, this function gets all the values in the table and calculates the sum of all the table values. The <code>ColumnEditable</code> property must be set to <code>true</code> in at least one column to allow the end user to edit cells in the table. For more information about creating tables and modifying their properties in GUIDE, see "Add Components to the GUIDE Layout Area".

Axes

The code in this section is an example of an axes ButtonDownFcn that triggers when the end user clicks on the axes.

The coordinates of the pointer display in the MATLAB Command Window when the end user clicks on the axes (but not when that user clicks on another graphics object parented to the axes).

Note: Most MATLAB plotting functions clear the axes and reset a number of axes properties, including the ButtonDownFcn, before plotting data. To create an interface that lets the end user plot data interactively, consider providing a component such as a push button to control plotting. Such components' properties are unaffected by the plotting functions. If you must use the axes ButtonDownFcn to plot data, then use functions such as line, patch, and surface.

Examples of GUIDE GUIs

The following are examples that are packaged with MATLAB. The introductory text for most examples provides instructions on copying them to a writable folder on your system, so you can follow along.

- "Modal Dialog Box in a GUIDE GUI" on page 9-2
- "GUI For Managing Persistent Data" on page 9-7
- "GUI That Accepts Parameters and Generates Plots" on page 9-20
- "Synchronized Data Presentations in a GUIDE GUI" on page 9-30
- "Interactive List Box in a GUIDE GUI" on page 9-46
- "Plot Workspace Variables in a GUIDE GUI" on page 9-52
- "GUI for Setting Simulink Model Parameters" on page 9-57
- "Animation with Slider Controls in a GUIDE GUI" on page 9-68
- "Automatically Refresh Plot in a GUIDE GUI" on page 9-79

Examples of GUIDE GUIS

- "Modal Dialog Box in a GUIDE GUI" on page 9-2
- "GUI For Managing Persistent Data" on page 9-7
- "GUI That Accepts Parameters and Generates Plots" on page 9-20
- "Synchronized Data Presentations in a GUIDE GUI" on page 9-30
- "Interactive List Box in a GUIDE GUI" on page 9-46
- "Plot Workspace Variables in a GUIDE GUI" on page 9-52
- "GUI for Setting Simulink Model Parameters" on page 9-57
- "Animation with Slider Controls in a GUIDE GUI" on page 9-68
- "Automatically Refresh Plot in a GUIDE GUI" on page 9-79

Modal Dialog Box in a GUIDE GUI

In this section...

"About the Example" on page 9-2

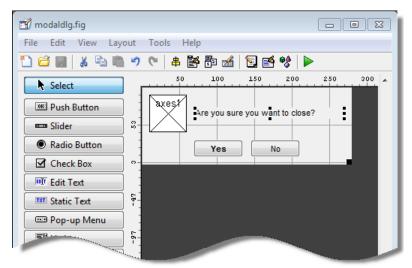
"Set Up the Close Confirmation Dialog Box" on page 9-2

"Set Up a GUI with a Close Button" on page 9-3

"Run the Close Confirmation GUI" on page 9-4

"How the Close Confirmation GUIs Work" on page 9-5

About the Example


This example shows how to create a modal dialog box to work with a GUI that has a **Close** button. Clicking the **Close** button displays the modal dialog box, which asks Are you sure you want to close?.

Set Up the Close Confirmation Dialog Box

- On the **Home** tab, in the **Environment** section, click **Preferences** > **GUIDE** > **Show names in component palette**.
- 2 In the Command window, type guide.
- 3 In the GUIDE Quick Start dialog box, select Modal Question Dialog. Then, click OK.

- 4 In the Layout Editor, right-click the static text, Do you want to create a question dialog?, and select **Property Inspector**.
- 5 Change the String property value to Are you sure you want to close?
- **6** In the Layout Editor select **File > Save**.
- 7 In the Save As dialog box, in the **File name** field, type modaldlg.fig.

Set Up a GUI with a Close Button

To set up a separate GUI with a **Close** button:

- 1 In the GUIDE Layout Editor, select **File > New**.
- 2 In the GUIDE Quick Start dialog box, select Blank GUI (Default). Then, click OK.
- **3** From the component palette on the left, drag a push button into the layout area.
- **4** Right-click the push button and select **Property Inspector**.
- 5 Change the String property value to Close.
- **6** Change the Tag property value to close_pushbutton.
- 7 From the File menu, select Save.
- 8 In Save As dialog box, in the **File name** field, type closedlg.fig. Then, click Save.

The code file, closedlg.m, opens in the Editor.

On the **Editor** tab, in the **Navigate** section, click **Go To**, and then select close pushbutton Callback.

The following generated code for the **Close** button callback appears in the Editor:

```
% --- Executes on button press in close_pushbutton.
function close_pushbutton_Callback(hObject, eventdata, handles)
% hObject handle to close_pushbutton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
```

9 After the preceding comments, add the following:

```
% Get the current position of the GUI from the handles structure
% to pass to the modal dialog.
pos_size = get(handles.figure1,'Position');
% Call modaldlg with the argument 'Position'.
user_response = modaldlg('Title','Confirm Close');
switch user_response
case {'No'}
% take no action
case 'Yes'
% Prepare to close GUI application window
%
%
.
delete(handles.figure1)
end
```

10 Save closedlg.m.

Run the Close Confirmation GUI

- On the Layout Editor toolbar, click the Run button .
- 2 In the closedlg dialog box, click the Close push button.

The modal dialog box opens.

3 Click Yes or No.

- Yes closes both dialog boxes.
- No closes just the Confirm Close dialog box.

How the Close Confirmation GUIs Work

This section describes how the GUIs work:

- 1 When you click the **Close** button, the close_pushbutton_Callback:
 - Gets the current position of the GUI from the handles structure with the command:

```
pos_size = get(handles.figure1,'Position')
```

b Calls the modal dialog box with the command:

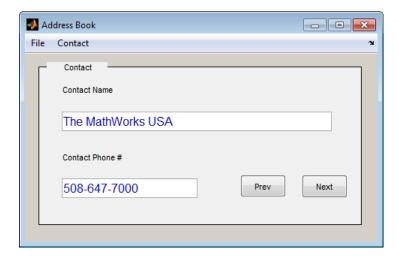
```
user response = modaldlg('Title','Confirm Close');
```

Tip This is an example of calling a GUI with a property value pair. In this case, the figure property is 'Title', and its value is the string 'Confirm Close'. Opening modaldlg with this syntax displays the text "Confirm Close" at the top of the dialog box.

- 2 The modal dialog box opens with the 'Position' obtained from the GUI that calls it.
- **3** The opening function in the modal modaldlg code file:
 - Makes the dialog box modal.
 - Executes the uiwait command, which causes the dialog box to wait for you to click **Yes** or **No**, or click the close button (X) on the window border.
- **4** When you click one of the two push buttons, the callback for the push button:
 - Updates the output field in the handles structure.
 - Executes uiresume to return control to the opening function where uiwait is called.
- 5 The output function is called, which returns the string Yes or No as an output argument, and deletes the dialog box with the command:

```
delete(handles.figure1)
```

6 When the GUI with the **Close** button regains control, it receives the string Yes or No. If the string is 'No', it does nothing. If the string is 'Yes', the **Close** button callback closes the GUI with the command:


delete(handles.figure1)

GUI For Managing Persistent Data

In this section... "About the Example" on page 9-7 "Calling Syntax" on page 9-8 "MAT-file Validation" on page 9-9 "GUI Behavior" on page 9-10 "Overall GUI Characteristics" on page 9-17

About the Example

This example shows how to manage MAT-file data using local functions in a GUIDE GUI. It steps you through the code that reads and displays data from a MAT-file. In addition, the GUI provides a **File** menu for saving a MAT-file (or loading a new one), and a **Contact** menu for adding entries to the MAT-file.

To get and view the example code:

Copy the example FIG-file and code file to your current (writeable) folder and open the FIG-file in GUIDE:

```
copyfile(fullfile(docroot, 'techdoc','creating_guis',...
   'examples','addr*.*')),...
   fileattrib('addr*.*', '+w');
guide address_book.fig;
```

2 In the GUIDE Layout Editor, click the Editor button **2**.

The address book.m code file opens in the MATLAB Editor.

Calling Syntax

The "address_book_OpeningFcn" on page 9-8 code in address_book.m interprets the input arguments:

- If you call the GUI, address_book, with no arguments, the GUI uses the default address book MAT-file.
- If you invoke the GUI with a pair of arguments (for example, address_book('book', 'my_list.mat')), the first argument, 'book', is a key word that the code looks for in the opening function. If the key word matches, the code uses the second argument as the MAT-file for the address book.

address_book_OpeningFcn

```
function address_book_OpeningFcn(hObject, eventdata, ...
 handles, varargin)
% Choose default command line output for address_book
handles.output = hObject;
% Make figure non-dockable
% set(hObject, 'DockControls', 'off')
set(hObject, 'WindowStyle', 'normal')
set(hObject, 'HandleVisibility', 'callback')
% Update handles structure
guidata(hObject, handles);
if nargin < 4
    % Load the default address book
    Check And Load([],handles);
    % If first element in varargin is 'book' and the second element is a
    % MATLAB file, then load that file
elseif (length(varargin) == 2 && ...
```

```
strcmpi(varargin{1},'book') && ...
(2 == exist(varargin{2},'file')))
Check_And_Load(varargin{2},handles);
else
    errordlg('File Not Found','File Load Error')
    set(handles.Contact_Name,'String','')
    set(handles.Contact_Phone,'String','')
end
```

MAT-file Validation

To be a valid address book, the MAT-file must contain a structure called Addresses that has two fields called Name and Phone. The "Check_And_Load" on page 9-9 function in address book.m validates and loads the data as follows:

- Loads the specified file or the default if no file is specified.
- Determines if the MAT-file is a valid address book.
- Displays the data if it is valid. If the data is not valid, displays an error dialog box (errordlg).
- Returns 1 for valid MAT-files and 0 if invalid (used by the Open menu callback).
- Saves the following items in the handles structure:
 - The name of the MAT-file
 - The Addresses structure
 - An index pointer indicating which name and phone number are currently displayed in the GUI

Check_And_Load

```
function pass = Check_And_Load(file,handles)
% Initialize the variable "pass" to determine if this is
% a valid file.
pass = 0;
% If called without any file then set file to the default
% file name. Otherwise if the file exists then load it.
if isempty(file)
    file = 'addrbook.mat';
    handles.LastFile = file;
    guidata(handles.Address Book,handles)
```

```
end
if exist(file,'file') == 2
    data = load(file);
end
% Validate the MAT-file
% The file is valid if the variable is called "Addresses"
% and it has fields called "Name" and "Phone"
flds = fieldnames(data);
if (length(flds) == 1) && (strcmp(flds{1}, 'Addresses'))
    fields = fieldnames(data.Addresses);
    if (length(fields) == 2) && (strcmp(fields{1}, 'Name'))...
 && (strcmp(fields{2}, 'Phone'))
        pass = 1;
    end
end
% If the file is valid, display it
if pass
    % Add Addresses to the handles structure
    handles.Addresses = data.Addresses;
    % Display the first entry
    set(handles.Contact_Name, 'String', data.Addresses(1).Name)
    set(handles.Contact_Phone, 'String',data.Addresses(1).Phone)
    % Set the index pointer to 1
    handles.Index = 1;
    % Save the modified handles structure
    guidata(handles.Address Book,handles)
else
    errordlg('Not a valid Address Book', 'Address Book Error')
end
```

GUI Behavior

- · "Open and Load MAT-File" on page 9-11
- "Retrieve and Store Data" on page 9-11
- "Data Update Confirmation" on page 9-13
- "Paging Through Entries Prev/Next" on page 9-14
- "Save File" on page 9-15
- "Clear GUI Fields" on page 9-17

Open and Load MAT-File

The address book GUI contains a **File > Open** menu option for loading address book MAT-files.

When you select this option, "Open_Callback" on page 9-11 in address_book.m opens a dialog box that enables you to browse for files.

The dialog box returns the file name and the path to the file, which are passed to fullfile to ensure the path is properly constructed for any platform. The Check And Load function validates and loads the new address book.

For information on creating the menu, see "Create Menus for GUIDE GUIs" on page 6-91.

Open_Callback

```
function Open Callback(hObject, eventdata, handles, varargin)
[filename, pathname] = uigetfile( ...
    {'*.mat', 'All MAT-Files (*.mat)'; ... '*.*','All Files (*.*)'}, ...
    'Select Address Book');
% If "Cancel" is selected then return
if isequal([filename,pathname],[0,0])
    return
    % Otherwise construct the full file name and and load the file.
else
    File = fullfile(pathname, filename);
    % if the MAT-file is not valid, do not save the name
    if Check And Load(File, handles)
        handles.LastFIle = File;
        guidata(hObject,handles)
    end
end
```

Retrieve and Store Data

The GUI's **Contact Name** text box displays the name of the address book entry. If you type in a new name and press enter, the "Contact_Name_Callback" on page 9-12 in address_book.m does the following:

• If the name exists in the current address book, the corresponding phone number displays.

- If the name does not exist, a question dialog box asks you if you want to create a new entry, or cancel and return to the name previously displayed.
- If you create a new entry, you must save the MAT-file using the File > Save menu.

The Contact_Name_Callback callback uses the handles structure to access the contents of the address book and to maintain an index pointer (handles.Index) that enables the callback to determine what name is displayed before you enter a new one. The index pointer indicates what name is currently displayed. The Check_And_Load function adds the address book and index pointer fields when you run the GUI.

If you add a new entry, the callback adds the new name to the address book and updates the index pointer to reflect the new value displayed. The updated address book and index pointer are again saved (using guidata) in the handles structure.

Contact_Name_Callback

```
function Contact Name Callback(hObject, eventdata, handles, varargin)
% Get the strings in the Contact Name and Phone text box
Current Name = get(handles.Contact Name, 'string');
Current Phone = get(handles.Contact Phone, 'string');
% If empty then return
if isempty(Current Name)
    return
end
% Get the current list of addresses from the handles structure
Addresses = handles.Addresses;
% Go through the list of contacts
% Determine if the current name matches an existing name
for i = 1:length(Addresses)
    if strcmp(Addresses(i).Name, Current Name)
        set(handles.Contact Name, 'string', Addresses(i).Name)
        set(handles.Contact Phone, 'string', Addresses(i).Phone)
        handles.Index = i;
        guidata(hObject,handles)
        return
    end
end
% If it's a new name, ask to create a new entry
Answer=questdlg('Do you want to create a new entry?', ...
    'Create New Entry', ...
```

```
'Yes', 'Cancel', 'Yes');
switch Answer
case 'Yes'
    Addresses(end+1).Name = Current Name; % Grow array by 1
    Addresses(end).Phone = Current Phone;
    index = length(Addresses);
    handles.Addresses = Addresses;
    handles.Index = index;
    guidata(hObject,handles)
    return
case 'Cancel'
    % Revert back to the original number
    set(handles.Contact Name, 'string', Addresses(handles.Index).Name)
    set(handles.Contact Phone, 'String', Addresses(handles.Index).Phone)
    return
end
```

Data Update Confirmation

The **Contact Phone** # text box displays the phone number of the entry listed in the **Contact Name** text box. If you type in a new number and click one of the push buttons, "Contact_Phone_Callback" on page 9-13 in address_book.m opens a question dialog box that asks you if you want to change the existing number or cancel your change.

This callback uses the index pointer (handles.Index) to update the new number in the address book and to revert to the previously displayed number if you click **Cancel** in the question dialog box. Both the current address book and the index pointer are saved in the handles structure so that this data is available to other callbacks.

Contact Phone Callback

```
function Contact_Phone_Callback(hObject, eventdata, handles, varargin)
Current_Phone = get(handles.Contact_Phone, 'string');
% If either one is empty then return
if isempty(Current_Phone)
    return
end
% Get the current list of addresses from the handles structure
Addresses = handles.Addresses;
Answer=questdlg('Do you want to change the phone number?', ...
    'Change Phone Number', ...
    'Yes','Cancel','Yes');
```

```
switch Answer
case 'Yes'
    % If no name match was found create a new contact
    Addresses(handles.Index).Phone = Current_Phone;
    handles.Addresses = Addresses;
    guidata(hObject,handles)
    return
case 'Cancel'
    % Revert back to the original number
    set(handles.Contact_Phone,'String',Addresses(handles.Index).Phone)
    return
end
```

Paging Through Entries — Prev/Next

By clicking the **Prev** and **Next** buttons you can page back and forth through the entries in the address book. The **Callback** property of both push buttons are set to call "Prev_Next_Callback" on page 9-14 in address book.m.

The Prev_Next_Callback defines an additional argument, str, that indicates which button, Prev or Next, is clicked. The Prev button Callback property includes 'Prev' as the last argument. The Next button Callback string includes 'Next' as the last argument. The value of str is used in case statements to implement each button's function.

The Prev_Next_Callback gets the current index pointer and the addresses from the handles structure and, depending on which button you click, the index pointer decrements or increments and the corresponding address and phone number display. The final step stores the new value for the index pointer in the handles structure and saves the updated structure using guidata.

Prev Next Callback

```
function Prev_Next_Callback(hObject, eventdata, handles, str)
% Get the index pointer and the addresses
index = handles.Index;
Addresses = handles.Addresses;
% Depending on whether Prev or Next was clicked,
% change the display
switch str
case 'Prev'
    % Decrease the index by one
    i = index - 1;
```

```
% If the index is less than one then set
  % it equal to the index of the
    % last element in the Addresses array
    if i < 1
        i = length(Addresses);
    end
case 'Next'
    % Increase the index by one
    i = index + 1;
    % If the index is greater than the size of the array then point
    % to the first item in the Addresses array
    if i > length(Addresses)
        i = 1;
    end
end
% Get the appropriate data for the index in selected
Current Name = Addresses(i).Name;
Current Phone = Addresses(i).Phone;
set(handles.Contact Name, 'string', Current Name)
set(handles.Contact Phone, 'string', Current Phone)
% Update the index pointer to reflect the new index
handles.Index = i;
guidata(hObject,handles)
```

Save File

When you make changes to an address book, the **File** submenus **Save** and **Save** As enable you to save the current MAT-file, or save it as a new MAT-file. These menus were created with the Menu Editor (**Tools** > **Menu Editor**, and use the same callback, Save_Callback.

"Save_Callback" on page 9-16 in address_book.m uses the menu Tag property (also specified in the Menu Editor) to identify whether Save or Save As is the callback object (that is, the object whose handle is passed in as the first argument to the Save_Callback).

The handles structure contains the Addresses structure, which the GUI must save (handles.Addresses) as well as the name of the currently loaded MAT-file (handles.LastFile). When you change a name or number in the GUI,

the Contact_Name_Callback or the Contact_Phone_Callback updates handles.Addresses.

If you select **Save**, the **save** function is called to save the current MAT-file with the new names and phone numbers.

If you select **Save As**, a dialog box displays which enables you to select the name of an existing MAT-file or specify a new file. The dialog box returns the selected file name and path. The final steps include:

- Using fullfile to create a platform-independent path name.
- Calling save to save the new data in the MAT-file.
- Updating the handles structure to contain the new MAT-file name.
- Calling guidata to save the handles structure.

Save_Callback

```
function Save Callback(hObject, eventdata, handles, varargin)
% Get the Tag of the menu selected
Tag = get(hObject, 'Tag');
% Get the address array
Addresses = handles.Addresses;
% Based on the item selected, take the appropriate action
switch Tag
case 'Save'
    % Save to the default addrbook file
    File = handles.LastFile;
    save(File,'Addresses')
case 'Save As'
    % Allow the user to select the file name to save to
    [filename, pathname] = uiputfile( ...
        {'*.mat';'*.*'}, ...
        'Save as');
    % If 'Cancel' was selected then return
    if isequal([filename,pathname],[0,0])
        return
    else
        % Construct the full path and save
        File = fullfile(pathname, filename);
        save(File,'Addresses')
        handles.LastFile = File;
```

```
\begin{array}{c} \text{guidata(hObject,handles)}\\ \text{end} \\ \end{array}
```

Clear GUI Fields

The **Create New** menu clears the **Contact Name** and **Contact Phone** # text fields to facilitate adding a new name and number. The New_Callback callback sets the text String properties to empty strings:

```
function New_Callback(hObject, eventdata, handles, varargin)
set(handles.Contact_Name,'String','')
set(handles.Contact_Phone,'String','')
```

Overall GUI Characteristics

The GUI is nonblocking and nonmodal because it is designed to be displayed while you perform other MATLAB tasks. GUI options, which you can view by selecting **Tools** > **GUI Options** in GUIDE specify the following:

Resize behavior: Other (Use SizeChangedFcn)

This sets the figure's SizeChangedFcn property to:

```
 @ (hObject, event data) address\_book('Address\_Book\_SizeChangedFcn', \dots \\ hObject, event data, guidata(hObject)) \\
```

- Command-line accessibility: Off
- Generate FIG file and MATLAB file (selected)
- Generate callback function prototypes (selected)
- GUI allows only one instance to run (singleton) (selected)

GUI Resize Behavior

When you resize the GUI, MATLAB calls the SizeChangedFcn callback. In this case, the name of the SizeChangedFcn callback is Address_Book_SizeChangedFcn.

The SizeChangedFcn callback enables you to make the GUI wider, so it can accommodate long names and numbers. However, you cannot make the GUI narrower than its original width and you cannot change the height. These restrictions simplify the callback, which must maintain the proper proportions between the figure size and the components in the GUI.

When the you resize the figure and release the mouse, the SizeChangedFcn callback executes. Unless you have maximized the figure, the SizeChangedFcn callback enforces the height of the GUI and resets the width of the **Contact Name** field. The following sections describe how this calculation works.

Width Changes

If the new width is greater than the original width, set the figure to the new width.

The size of the **Contact Name** text box changes in proportion to the new figure width. This is accomplished by:

- · Obtaining the figure width as a ratio of its original width.
- Expanding or contracting the width of the Contact Name field proportionally.

If the new width is less than the original width, use the original width. The code relies on the fact that the original width of the **Contact Name** field is 72 character units.

Height Changes

The height and width of the GUI is specified in pixel units. Using units of pixels enables maximizing and minimizing the figure to work properly. The code assumes that its dimensions are 470-by-250 pixels. If you attempt to change the height, the code restores the original height. However, because the resize function is triggered when you release the mouse button after changing the size, the resize function cannot always determine the original position of the GUI on screen. Therefore, the resize function applies a compensation to the vertical position (second element in the figure Position vector) by adding the vertical position to the height when you release the mouse and subtracting the original height.

When you resize the GUI from the bottom, the GUI stays in the same position. When you resize from the top, the GUI moves to the location where you release the mouse button.

SizeChangedFcn

```
% uicontrol units are in 'characters'
Figure_Size = get(hObject, 'Position');
% This is the figure's original position in pixel units
Original_Size = [350 700 470 250];
% If the figure seems to be maximized, do not resize at all
pix_pos = get(hObject, 'Position');
scr_size = get(groot, 'ScreenSize');
if .99*scr_size(3) < pix_pos(3)  % Apparently maximized
    % When docked, get out</pre>
```

```
return
end
% If resized figure is smaller than original figure, then compensate.
% However, do not change figure size if it is docked; just adjust
% uicontrols
if ~strcmp(get(hObject, 'WindowStyle'), 'docked')
    if Figure Size(3) < Original Size(3)</pre>
        % If the width is too small then reset to original width
        set(hObject, 'Position',[Figure Size(1) ...
                                 Figure Size(2) ...
                                 Original Size(3) ...
                                 Original Size(4)])
        Figure Size = get(hObject, 'Position');
    end
    if abs(Figure Size(4) - Original Size(4)) > 10 % pixels
        % Do not allow the height to change
        set(hObject, 'Position',[Figure Size(1) ...
            Figure Size(2)+Figure Size(4)-Original Size(4) ...
            Figure Size(3) ...
            Original Size(4)])
    end
    movegui(hObject, 'onscreen')
end
% Get Contact Name field Position for readjusting its width
C N pos = get(handles.Contact Name, 'Position');
ratio = Figure Size(3) / Original Size(3);
% Reset it so that its width remains proportional to figure width
% The original width of the Contact Name box is 72 (characters)
set(handles.Contact Name, 'Position', [C N pos(1) ...
                                      C N pos(2) ...
                                      ratio * 72 ...
                                      C N pos(4)])
```

Keeping Resized Figure On Screen

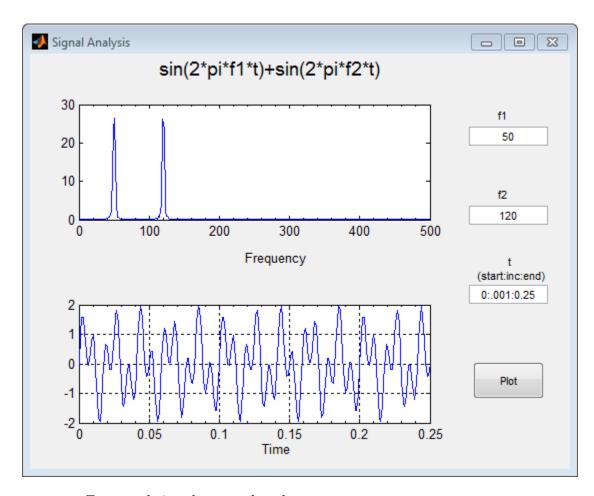
The SizeChangedFcn callback calls movegui to ensure that the resized GUI is on screen regardless of where you release the mouse.

The first time it runs, the GUI displays at the size and location specified by the figure Position property. This property was set with the Property Inspector when the GUI was created and it can be changed it in GUIDE at any time.

GUI That Accepts Parameters and Generates Plots

In this section...

"About the Example" on page 9-20


"GUI Design" on page 9-22

"Validate GUI Input as Numbers" on page 9-24

"Plot Push Button Behavior" on page 9-27

About the Example

This example shows how to create a GUIDE GUI that accepts input parameters and plots data in two axes. The parameters define a time-varying and frequency-varying signal. One plot displays the data in the time domain, and the other plot displays the data in the frequency domain.

To get and view the example code:

1 Copy the example FIG-file and code file to your current (writeable) folder and open the FIG-file in GUIDE:

```
copyfile(fullfile(docroot, 'techdoc','creating_guis',...
'examples','two_axes*.*')), fileattrib('two_axes*.*', '+w')
guide two axes.fig
```

From the GUIDE Layout Editor, click the Editor button .

The two_axes.m code displays in the MATLAB Editor.

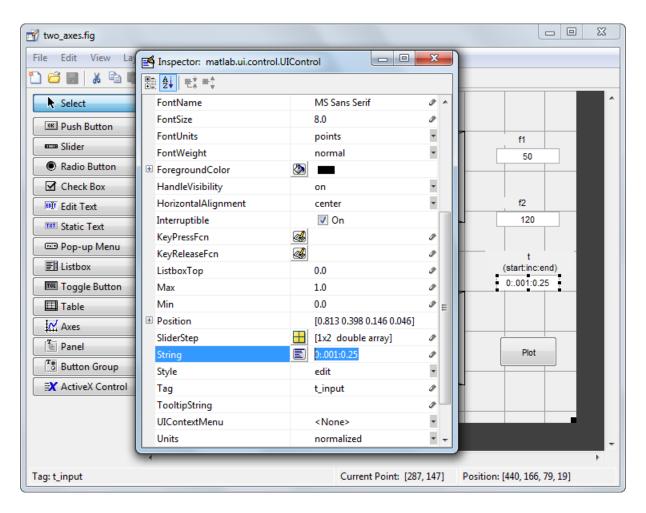
If you run the GUI and click the **Plot** button, the GUI appears as shown in the preceding figure. The GUI code evaluates the expression displayed at the top of the GUI using parameters that you enter in the **f1**, **f2**, and **t** fields. The upper line graph displays a Fourier transform of the computed signal displayed in the lower line graph.

GUI Design

This GUI plots two graphs depicting three input values:

- Frequency one (f1)
- Frequency two (f2)
- A time vector (t)

When you click the **Plot** button, the GUI puts these values into a MATLAB expression that is the sum of two sine functions:


```
x = \sin(2*pi*f1*t) + \sin(2*pi*f2*t)
```

Then, the GUI calculates the FFT (fast Fourier transform) of **x** and plots the data in the frequency domain and the time domain in separate axes.

Default Values for Inputs

The GUI provides default values for the three inputs. This enables you to click the **Plot** button and see a result as soon as you run the GUI. The defaults indicate typical values.

The default values are created by setting the String property of the edit text. The following figure shows how the value was set for the time vector.

Identify the Axes

Since there are two axes in this GUI, you must specify which one you want to target when plotting data. Use the handles structure to access the target axes in your code. All fields in the handles structure are named according to each object's Tag property value. In this case, handles.frequency_axes returns the top axes, and the handles.time_axes returns the bottom axes.

Validate GUI Input as Numbers

When you use the GUI, you type parameters into three edit text boxes as strings of text. If you type an invalid value, the graphs can fail to inform or even to generate. Preventing bad inputs from being processed is an important function of almost any GUI that performs computations. This GUI validates that:

- All three inputs are positive or negative real numbers
- The t (time) input is a vector that increases monotonically and is not too long to legibly display

Validate all three inputs are positive or negative real numbers

In this example, each edit text control callback validates its input. If the input fails validation, the callback disables the **Plot** button, changes its **String** to indicate the type of problem encountered, and restores focus to the edit text control, highlighting the erroneous input. When you enter a valid value, the **Plot** button reenables with its **String** set back to '**Plot**'. This approach prevents plotting errors and avoids the need for an error dialog box.

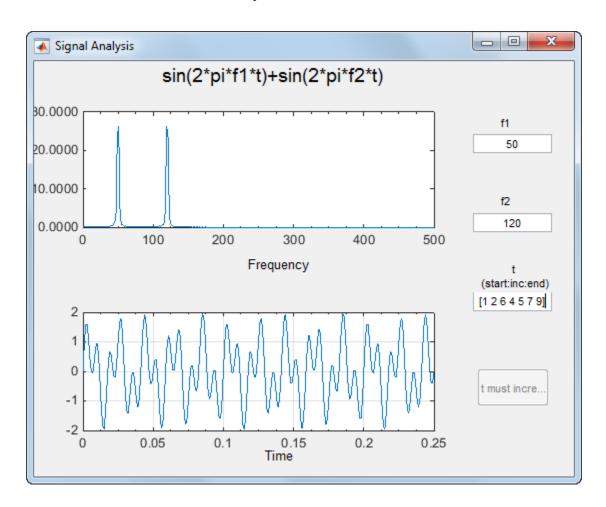
The str2double function validates most cases, returning NaN (Not a Number) for nonnumeric or nonscalar string expressions. An additional test using the isreal function makes sure that a text edit field does not contain a complex number, such as '4+2i'. The f1 input Callback contains the following code to validate input for f1:

```
function f1_input_Callback(hObject, eventdata, handles)
% Validate that the text in the f1 field converts to a real number
f1 = str2double(get(hObject,'String'));
if isnan(f1) || -isreal(f1)
% isdouble returns NaN for non-numbers and f1 cannot be complex
% Disable the Plot button and change its string to say why
set(handles.plot_button,'String','Cannot plot f1')
set(handles.plot_button,'Enable','off')
% Give the edit text box focus so user can correct the error
uicontrol(hObject)
else
% Enable the Plot button with its original name
set(handles.plot_button,'String','Plot')
set(handles.plot_button,'Enable','on')
end
Similarly, f2 input Callback code validates the f2 input.
```

Validate the Time Input Vector

The time vector input, t, is more complicated to validate. As the str2double function does not operate on vectors, the eval function is called to convert the input string into

a MATLAB expression. Because you can type many things that eval cannot handle, the first task is to make sure that eval succeeded. The t_input_Callback uses try, catch blocks to do the following:


- · Call eval with the t input string inside the try block.
- · If eval succeeds, perform additional tests within the try block.
- If eval generates an error, pass control to the catch block.
- In that block, the callback disables the **Plot** button and changes its **String** to 'Cannot plot t'.

The remaining code in the try block makes sure that the variable t returned from eval is a monotonically increasing vector of numbers with no more than 1000 elements. If t passes all these tests, the callback enables **Plot** button and sets its String to 'Plot'. If it fails any of the tests, the callback disables the **Plot** button and changes its String to an appropriate short message. Here are the try and catch blocks from the callback:

```
function t input Callback(hObject, eventdata, handles)
% Disable the Plot button ... until proven innocent
set(handles.plot button, 'Enable', 'off')
    t = eval(get(handles.t_input, 'String'));
    if ~isnumeric(t)
        % t is not a number
        set(handles.plot button, 'String', 't is not numeric')
    elseif length(t) < 2
        % t is not a vector
        set(handles.plot_button, 'String', 't must be vector')
    elseif length(t) > 1\overline{000}
        % t is too long a vector to plot clearly
        set(handles.plot button, 'String', 't is too long')
    elseif min(diff(t)) < 0
        % t is not monotonically increasing
        set(handles.plot_button, 'String', 't must increase')
        % All OK; Enable the Plot button with its original name
        set(handles.plot_button, 'String', 'Plot')
        set(handles.plot_button, 'Enable', 'on')
        return
   end
   % Found an input error other than a bad expression
   % Give the edit text box focus so user can correct the error
   uicontrol(hObject)
 catch EM
    % Cannot evaluate expression user typed
    set(handles.plot_button,'String','Cannot plot t')
    % Give the edit text box focus so user can correct the error
    uicontrol(hObject)
end
```

The edit text callbacks execute when you enter text in an edit box and press **Return** or click elsewhere in the GUI. Even if you immediately click the **Plot** button, the edit text callback executes before the **plot** button callback activates. When a callback receives invalid input, it disables the **Plot** button, preventing its callback from running. Finally, it restores focus to itself, selecting the text that did not validate so that you can re-enter a value.

For example, here is the GUI's response to input of a time vector, [1 2 6 4 5 7 9], that does not monotonically increase.

In this figure, the two plots reflect the last successful set of inputs, f1 = 31.41, f2 = 120, and t = [1 2 3 4 5 7 9]. The time vector [1 2 6 4 5 7 9] appears highlighted so that you can enter a new, valid, value. The highlighting results from executing the command uicontrol(hObject) in the preceding code listing.

Plot Push Button Behavior

When you click the **Plot** button, the plot_button_Callback performs three basic tasks: it gets input from the edit text components, calculates data, and creates the two plots.

Get Input

The first task for the plot button Callback is to read the input values. This involves:

- Reading the current values in the three edit text boxes using the handles structure to access the edit text handles
- Converting the two frequency values (f1 and f2) from strings to doubles using str2double.
- Evaluating the time string using eval to produce a vector t, which the callback used to evaluate the mathematical expression.

The following code shows how the plot_button_Callback obtains the input:

```
% Get user input from GUI
f1 = str2double(get(handles.f1_input,'String'));
f2 = str2double(get(handles.f2_input,'String'));
t = eval(get(handles.t input,'String'));
```

Calculate Data

After constructing the string input parameters to numeric form and assigning them to local variables, the next step is to calculate data for the two graphs. The plot_button_Callback computes the time domain data using an expression of sines:

```
x = \sin(2*pi*f1*t) + \sin(2*pi*f2*t);
```

The callback computes the frequency domain data as the Fourier transform of the time domain data:

```
v = fft(x,512);
```

For an explanation of this computation, see the fft function.

Plot Data

The final task for the plot button Callback is to generate two plots. This involves:

 Targeting plots to the appropriate axes. For example, this code directs a graph to the time axes:

```
plot(handles.time axes,t,x)
```

- Providing the appropriate data to the plot function
- Turning on the axes grid, which the plot function automatically turns off

Note: Performing the last step is necessary because many plotting functions (including plot) clear the axes and reset properties before creating the graph. This means that you cannot use the Property Inspector to set the XMinorTick, YMinorTick, and grid properties in this example, because they are reset when the callback executes plot.

In the following code listing, notice how the handles structure provides access to the handle of the axes, when needed.

Plot Button Callback

```
function plot_button_Callback(hObject, eventdata, handles, varargin)
% hObject
             handle to plot button (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles
             structure with handles and user data (see GUIDATA)
% Get user input from GUI
f1 = str2double(get(handles.f1_input, 'String'));
f2 = str2double(get(handles.f2 input, 'String'));
t = eval(get(handles.t_input, 'String'));
% Calculate data
x = \sin(2*pi*f1*t) + \sin(2*pi*f2*t);
y = fft(x,512);
m = y.*conj(y)/512;
f = 1000*(0:256)/512;
% Create frequency plot in proper axes
plot(handles.frequency axes,f,m(1:257))
set(handles.frequency axes, 'XMinorTick', 'on')
grid on
% Create time plot in proper axes
plot(handles.time axes,t,x)
set(handles.time axes, 'XMinorTick', 'on')
grid on
```

GUI Option Settings

Two GUI Options settings (accessed using **Tools > Menu Options**) are particularly important for this GUI:

Resize behavior: Proportional

Selecting **Proportional** as the resize behavior enables you to resize the GUI to better view the plots. Using this option setting, when you resize the GUI, everything expands or shrinks proportionately, except text.

· Command-line accessibility: Callback

When GUIs include axes, their handles should be visible from other objects' callbacks. This enables you to use plotting commands like you would on the command line. **Callback** is the default setting for command-line accessibility.

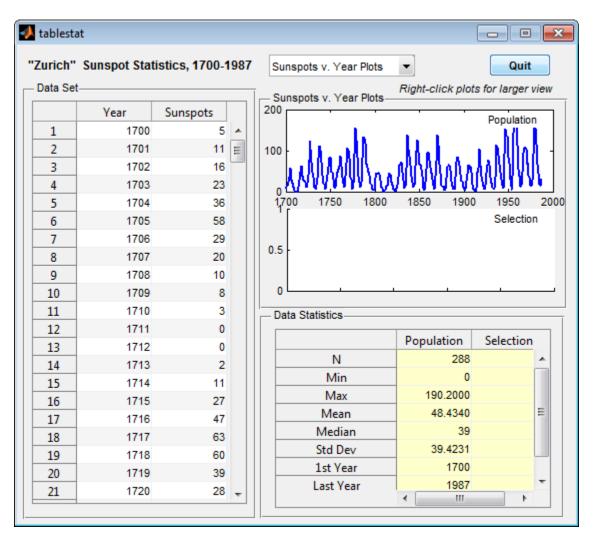
For more information, see "GUIDE Options" on page 5-8.

Synchronized Data Presentations in a GUIDE GUI

In this section...

"About the Example" on page 9-30

"Recreate the GUI" on page 9-32


About the Example

This example shows how to program a GUI that has the following features:

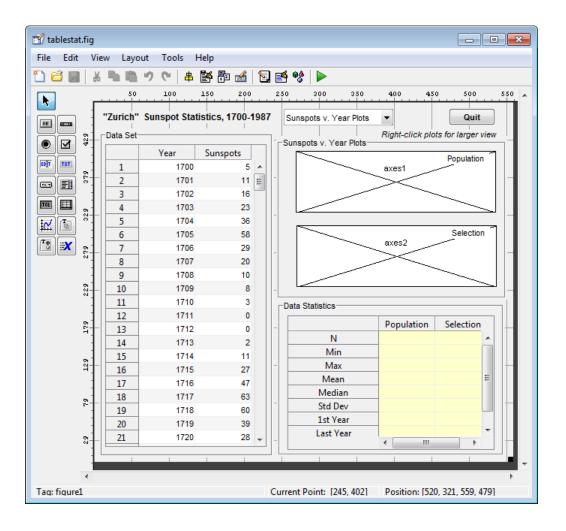
- · Initializes a table and a plot.
- Plots selected data in real time as you select data observations.
- · Generates line graphs that display different views of data.

This GUI plots different kinds of graphs into different axes for an entire data set or selections of it, and shows how Fourier transforms can identify periodicity in time series data.

You can use this GUI to analyze and visualize time-series data containing periodic events.

To get and view the example code:

1 Copy the example FIG-file and code file to your current (writeable) folder and open the FIG-file in GUIDE with the following commands:


```
copyfile(fullfile(docroot, 'techdoc','creating_guis',...
'examples','tablestat*.*')), fileattrib('tablestat*.*', '+w');
guide tablestat.fig;
```

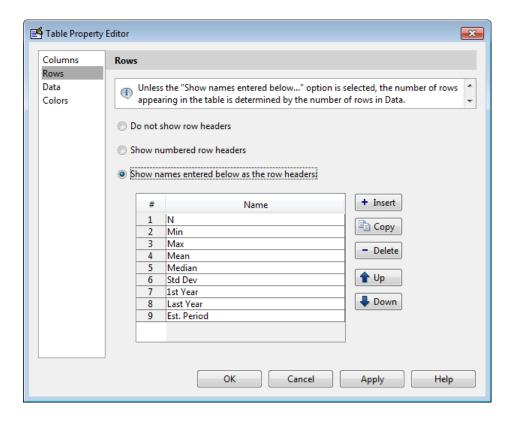
In the GUIDE Layout Editor, click the Editor button .

The tablestat.m code file opens in the MATLAB Editor.

Recreate the GUI

In the GUIDE Layout Editor, the tablestat GUI looks like this.

Perform the following steps in GUIDE and in the Property Inspector to generate the layout:


- In the Command Window, type guide, select the Blank GUI template, and then click OK.
- Use the Panel tool, , to drag out the three uipanels into the positions shown above. Keep the defaults for their Tag properties (which are uipanel1, uipanel2, and uipanel3). Create, in order:
 - a A long panel on the left. In the Property Inspector, set its Title property value to Data Set.
 - **b** A panel on the lower right, half the height of the first panel. In the Property Inspector, set its Title property value to Data Statistics.
 - renaming its Title to in the Property Inspector.
 - c A panel above the **Data Statistics** panel. In the Property Inspector, set its Title property to Sunspots v. Year Plots. This panel changes its name when the type of plot changes.
- Use the Table tool, , to drag a uitable inside the **Data Set** panel. Use the Property Inspector to set the property values as follows:
 - ColumnName: Year and Sunspot.
 - Data: As described in "Initialize the Data Table" on page 9-37.
 - · Tag: data_table.
 - TooltipString: Drag to select a range of 11 or more observations.
 - CellSelectionCallback: data_table_CellSelectionCallback.

Click the pencil-and-paper icon to have GUIDE set this property value automatically and declare it in the code file.

- **4** Drag a second uitable inside the **Data Statistics** panel. Use the Table Property Editor to set row values as follows:
 - Double-click the **Data Statistics** table to open it in the Property Inspector.

- In the Property Inspector, click the Table Property Editor icon to the RowName property to open the Table Property Editor.
- **c** In the Table Property Editor, select **Rows** from the list in the left-hand column.
- d Select the bottom radio button, Show names entered below as row headers.
- Type the nine strings listed in order on separate lines in the data entry pane, and then click **OK**.
 - BackgroundColor: yellow (using the color picker).
 - ColumnName: Population and Selection.
 - Tag: data_stats.
 - TooltipString: statistics for table and selection.
 - RowNameto nine strings: N, Min, Max, Mean, Median, Std Dev, 1st Year, Last Year, and Est. Period.

The Table Property Editor looks like this before you close it.

The **Data Statistics** table does not use any callbacks.

- Use the Axes tool to drag out an axes within the top half of the Sunspots v. Year Plots panel, leaving its name as axes1.
- 6 Drag out a second axes, leaving its name as axes2 inside the Sunspots v. Year Plots panel, directly below the first axes.
 - Leave enough space below each axes to display the *x*-axis labels.
- 7 Identify the axes with labels. Using the Text tool, drag out a small rectangle in the upper right corner of the upper axes (axes1). Double-click it, and in the Property Inspector, change its String property to Population and its Tag property to poplabel.

- 8 Place a second label in the lower axes (axes2), renaming this text object Selection and setting its Tag property to sellabel.
- **9** Create a title for the GUI. Using the Text tool, drag out a static text object at the top left of the GUI, above the data table. Double-click it, and in the Property Inspector, change its String property to "Zurich" Sunspot Statistics, 1700-1987 and its FontWeight property to bold.
- 10 Add a prompt above the axes; place a text label just above the **Sunspots v. Year**Plots panel, near its right edge. Change its Tag property to newfig, its String

 property to Right-click plots for larger view and its FontAngle property

 to Italic.
- Make a pop-up menu to specify the type of graph to plot. Using the Pop-up Menu tool drag out a pop-up menu just above the **Sunspots v. Year** panel, aligning it to the panel's left edge. In the Property Inspector, set these properties:
 - · String:

Sunspots v. Year Plots FFT Periodogram Plots

- · Tag: plot type
- · Tooltip: Choose type of data plot

Then, click the Callback property's icon. This creates a declaration called plot type Callback, to which you add code later on.

- Select the Push Button tool , and drag out a push button in the upper right of the figure. In the Property Inspector, rename it to **Quit** and set up its callback as follows:
 - Double-click it and in the Property Inspector, set its Tag property to quit and its String property to Quit.
 - Click the Callback property to create a callback for the button in the code file tablestat.m. GUIDE sets the Callback of the Quit item to quit_Callback.
 - In the code file, for the quit_Callback function. enter:

```
close(ancestor(hObject, 'figure'))
```

13 Save the GUI in GUIDE, naming it tablestat.fig. This action also saves the code file as tablestat.m.

Initialize the Data Table

Although you can use the Opening Function to load data into a table, this example uses GUIDE to put data into the **Data Set** table. This way, the data becomes part of the figure after you save it. Initializing the table data causes the table to have the same number of rows and columns as the variable that it contains:

- 1 Access the sunspot example data set. In the Command Window, type:
 - load sunspot.dat
 The variable sunspot, a 288-by-2 double array, displays in the MATLAB workspace.
- 2 Open the Property Inspector for the data table by double-clicking the **Data Set** table.
- In the Property Inspector, click the Table Editor icon to the right of the Data property to open the Table Property Editor.
- 4 In the Table Property Editor, select **Table** from the list in the left-hand column.
- 5 Select the bottom radio button, Change data value to the selected workspace variable below.
- **6** From the list of workspace variables in the box below the radio button, select sunspot and click **OK**.

GUIDE inserts the sunspot data in the table.

Compute the Data Statistics

The Opening Function retrieves the preloaded data from the data table and calls the local function, setStats, to compute population statistics, and then returns them. The data_table_CellSelectionCallback performs the same action when you select more than 10 rows of the data table. The only difference between these two calls is what input data is provided and what column of the **Data Statistics** table is computed. Here is the setStats function:

```
function stats = setStats(table, stats, col, peak)
% Computes basic statistics for data table.
% table The data to summarize (a population or selection)
% stats Array of statistics to update
% col Which column of the array to update
% peak Value for the peak period, computed externally
stats{1,col} = size(table,1); % Number of rows
```

```
stats{2,col} =
                  min(table(:,2));
stats{3,col} =
                  max(table(:,2));
stats{4,col} =
                 mean(table(:,2));
stats{5,col} = median(table(:,2));
stats{6,col} =
                  std(table(:,2));
stats{7,col} =
                      table(1,1);
                                      % First row
stats{8,col} =
                      table(end,1);
                                      % Last row
if ~isempty(peak)
    stats{9,col} = peak;
                                      % Peak period from FFT
end
```

Note: When assigning data to a uitable, use a cell array, as shown in the code for setStats. You can assign data that you retrieve from a uitable to a numeric array, however, only if it is entirely numeric. Storing uitable data in cell arrays enables tables to hold numbers, strings of characters, or combinations of them.

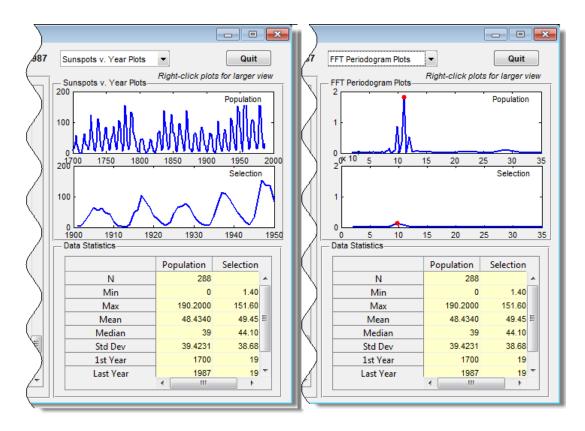
The stats matrix is a 9-by-2 cell array in which each row is a separate statistic computed from the table argument. The last statistic is not computed by setStats; it comes from the plotPeriod function when it computes and plots the FFT periodogram and is passed to setStats as the peak parameter.

Specify the Type of Data Plot

From the GUI, you can choose either of two types of plots to display from the plot_type pop-up menu:

- Sunspots v. Year Plots Time-series line graphs displaying sunspot occurrences year by year (default).
- Periodogram Plots Graphs displaying the FFT-derived power spectrum of sunspot occurrences by length of cycle in years.

When the plot type changes, one or both axes refresh. They always show the same kind of plot, but the bottom axes is initially empty and does not display a graph until you select at least 11 rows of the data table.


The plot_type control callback is plot_type_Callback. GUIDE generates it, and you must add code to it that updates plots appropriately. In the example, the callback consists of this code:

```
function plot type Callback(hObject, eventdata, handles)
```

```
% hObject
             handle to plot type (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles
             structure with handles and user data (see GUIDATA)
% ---- Customized as follows ----
% Determine state of the pop-up and assign the appropriate string
% to the plot panel label
index = get(hObject, 'Value');
                                 % What plot type is requested?
strlist = get(hObject, 'String');
                                        % Get the choice's name
set(handles.uipanel3, 'Title', strlist(index)) % Rename uipanel3
% Plot one axes at a time, changing data; first the population
table = get(handles.data table, 'Data'); % Obtain the data table
refreshDisplays(table, handles, 1)
% Now compute stats for and plot the selection, if needed.
% Retrieve the stored event data for the last selection
selection = handles.currSelection:
if length(selection) > 10 % If more than 10 rows selected
    refreshDisplays(table(selection,:), handles, 2)
else
    % Do nothing; insufficient observations for statistics
end
```

The function updates the Data Statistics table and the plots. To perform the updates, it calls the refreshDisplays function twice, which is a custom function added to the GUI code file. In between the two calls, the refreshDisplays function retrieves row indices for the current selection from the currSelection member of the handles structure, where they were cached by the data table CellSelectionCallback.

You can see the effect of toggling the plot type in the two illustrations that follow. The one on the left shows the Sunspots v. Year plots, and the one on the right shows the FFT Periodograms Plots. The selection in both cases is the years 1901–1950.

Respond to Data Selections

The **Data Set** table has two columns: **Year** and **Sunspots**. The data tables's Cell Selection Callback analyzes data from its second column, regardless of which columns you highlight. The **setStats** function (not generated by GUIDE) computes summary statistics observations from the second column for insertion into the **Data Statistics** table on the right. The **plotPeriod** function (not generated by GUIDE) plots either the raw data or a Fourier analysis of it.

The data_table_CellSelectionCallback function manages the application's response to you selecting ranges of data. Ranges can be contiguous rows or separate groups of rows; holding down the Ctrl key lets you add discontiguous rows to a selection. Because the Cell Selection Callback is triggered as long as you hold the left mouse button down within the table, the selection statistics and lower plot are refreshed until selection is completed.

Selection data is generated during mouseDown events (mouse drags in the data table). The uitable passes this stream of cell indices (but not cell values) via the eventdata structure to the data_table_CellSelectionCallback callback. The callback's code reads the indices from the Indices member of the eventdata.

When the callback runs (for each new value of eventdata), it turns the event data into a set of rows:

```
selection = eventdata.Indices(:,1);
selection = unique(selection);
```

The event data contains a sequence of [row, column] indices for each table cell currently selected, one cell per line. The preceding code trims the list of indices to a list of selected rows, removing column indices. Then it calls the unique MATLAB function to eliminate any duplicate row entries, which arise whenever you select both columns. For example, suppose eventdata.Indices contains:

This indicates that you selected the first three rows in column one (Year) and rows three and four in column two (Sunspots) by holding down the **Ctrl** key when selecting numbers in the second column. The preceding code transforms the indices into this vector:

This vector enumerates all the selected rows. If the selection includes less than 11 rows (as it does here) the callback returns, because computing statistics for a sample that small is not useful.

When the selection contains 11 or more rows, the data table is obtained, the selection is cached in the handles structure, and the refreshDisplays function is called to update the selection statistics and plot, passing the portion of the table that you selected:

```
table = get(hObject, 'Data');
handles.currSelection = selection;
guidata(hObject, handles)
refreshDisplays(table(selection,:), handles, 2)
```

Caching the list of rows in the selection is necessary because changing plot types can force selection data to be replotted. As the plot_type_Callback has no access to the data table's event data, it requires a copy of the most recent selection.

Update the Statistics Table and the Graphs

The code must update the Data Statistics table and the graphs above it when:

- The GUI is initialized, in its tablestat_OpeningFcn.
- You select cells in the data table, in its data_table_CellSelectionCallback.
- You select a different plot type, in the plot type Callback.

In each case, the refreshDisplays function is called to handle the updates. It in turn calls two other custom functions:

- setStats Computes summary statistics for the selection and returns them.
- plotPeriod Plots the type of graph currently requested in the appropriate axes.

The refreshDisplays function identifies the current plot type and specifies the axes to plot graphs into. After calling plotPeriod and setStats, it updates the **Data** Statistics table with the recomputed statistics. Here is the code for refreshDisplays:

If you are reading this document in the MATLAB Help Browser, click the names of the functions underlined above to see their complete code (including comments) in the MATLAB Editor.

Display Graphs in New Figure Windows

The tablestat GUI contains code to display either of its graphs in a larger size in a new figure window when you right-click either axes and selects the pop-up menu item,

Open plot in new window. The static text string (tagged newfig) above the plot panel, Right-click plots for larger view, informs you that this feature is available.

The axes respond by:

- 1 Creating a new figure window.
- **2** Copying their contents to a new axes parented to the new figure.
- **3** Resizing the new axes to use 90% of the figure's width.
- **4** Constructing a title string and displaying it in the new figure.
- 5 Saving the figure and axes handles in the handles structure for possible later use or destruction.

Note: Handles are saved for both plots, but each time a new figure is created for either of them, the new handles replace the old ones, if any, making previous figures inaccessible from the GUI.

Create Two Context Menus

To create the two context menus, from the GUIDE **Tools** menu, select the **Menu Editor**. After you create the two context menus, attach one to the each axes, axes1 and axes2. In the Menu Editor, for each menu:

- 1 Click the **Context Menus** tab to select the type of menu you are creating.
- Click the New Context Menu icon

This creates a context menu in the Menu Editor workspace called untitled. It has no menu items and is not attached to any GUI object yet.

- 3 Select the new menu and in the **Tag** edit field in the **Menu Properties** panel, type plot axes1.
- 4 Click the **New Menu Item** icon

A menu item is displayed underneath the plot_axes1 item in the Menu Editor workspace.

- 5 In the **Menu Properties** panel, type Open plot in new window for **Label** and plot_ax1 for **Tag**. Do not set anything else for this item.
- **6** Repeat the last four steps to create a second context menu:

- Make the Tag for the menu plot_axes2.
- Create a menu item under it and make its **Label Open plot** in new window and assign it a **Tag** of plot ax2.
- 7 Click **OK** to save your menus and exit the Menu Editor.

For more information about using the Menu Editor, see "Create Menus for GUIDE GUIS" on page 6-91.

Attach Context Menus to Axes

Add the context menus you just created to the axes:

- In the GUIDE Layout Editor, double-click axes1 (the top axes in the upper right corner) to open it in the Property Inspector.
- 2 Click the right-hand column next to UIContextMenu to see a drop-down list.
- **3** From the list, select plot axes1.

Perform the same steps for axes2, but select plot axes2 as its UIContextMenu.

Code Context Menu Callbacks

The two context menu items perform the same actions, but create different objects. Each has its own callback. Here is the plot_ax1_Callback callback for axes1:

```
function plot ax1 Callback(hObject, eventdata, handles)
             handle to plot ax1 (see GCBO)
% hObject
% eventdata reserved - to be defined in a future version of MATLAB
% handles
             structure with handles and user data (see GUIDATA)
% Displays contents of axes1 at larger size in a new figure
% Create a figure to receive this axes' data
axes1fig = figure;
% Copy the axes and size it to the figure
axes1copy = copyobj(handles.axes1,axes1fig);
set(axes1copy, 'Units', 'Normalized',...
              'Position',[.05,.20,.90,.60])
% Assemble a title for this new figure
str = [get(handles.uipanel3, 'Title') ' for ' ...
       get(handles.poplabel, 'String')];
title(str,'Fontweight','bold')
% Save handles to new fig and axes in case
```

```
% we want to do anything else to them
handles.axes1fig = axes1fig;
handles.axes1copy = axes1copy;
guidata(hObject,handles);
```

The other callback, plot_ax2_Callback, is identical to plot_ax1_Callback, except that all instances of 1 in the code are replaced by 2, and poplabel is replaced with sellabel. The poplabel and sellabel objects are the **Population** and **Selection** labels on axes1 and axes2, respectively. These strings are appended to the current Title for uipanel3 to create a title for the plot in the new figure axes1fig or axes2fig.

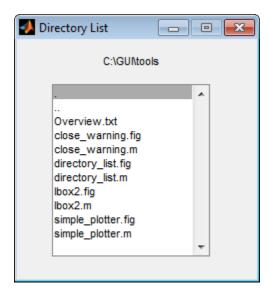
Use Plot in New Window Feature

Whenever you right-click one of the axes in the GUI and select Open plot in new window, a new figure is generated containing the graph in the axes. The callbacks do not check whether a graph exists in the axes (axes2 is empty until you select cells in the Data Set) or whether a previously opened figure contains the same graph. A new figure is always created and the contents of axes1 or axes2 are copied into it. For example, you could right-click a periodogram in axes1 and select Open plot in new window.

It is your responsibility to remove the new window when it is no longer needed. The context menus can be programmed to do this. Because their callbacks call guidata to save the handle of the last figure created for each of the GUI's axes, another callback can delete or reuse either figure. For example, the plot_ax1_Callback and plot_ax2_Callback callbacks could check guidata for a valid axes handle stored in handles.axes1copy or handles.axes2copy, and reuse the axes instead of creating a new figure.

Related Examples

- "Fast Fourier Transform (FFT)"
- "The FFT in One Dimension"


Interactive List Box in a GUIDE GUI

In this section... "About the Example" on page 9-46 "Implement the List Box GUI" on page 9-47

About the Example

This example shows how to create a list box to display the files in a folder. When you double click a list item, MATLAB opens the item:

- If the item is a file, MATLAB opens the file using the appropriate application.
- · If the item is a folder, MATLAB reads the contents of that folder into the list box.

To get and view the example code:

1 Copy the example FIG-file and code file to your current (writeable) folder and open the FIG-file in GUIDE and the with the following commands:

```
copyfile(fullfile(docroot, 'techdoc','creating_guis',...
'examples','lbox2*.*')), fileattrib('lbox2*.*', '+w')
guide lbox2.fig
```

From GUIDE Layout Editor, click the Editor button .

The lbox2.m code displays in the MATLAB Editor.

Implement the List Box GUI

The following sections describe the implementation:

- "Specify the Folder" on page 9-47 shows how to pass a folder path as input argument when the GUI runs.
- "Load the List Box" on page 9-48 describes the local function that loads the contents of the folder into the list box. This local function also saves information about the contents of a folder in the handles structure.
- "Code List Box Behavior" on page 9-49 describes how the list box is coded to respond to double clicks on items in the list box.

Specify the Folder

By default, GUI code files generated by GUIDE open the GUI when there are no input arguments, and call a local function when the first input argument is a character string. This example changes the behavior so that if you put the example files, <code>lbox2.m</code> and <code>lbox2.fig</code>, on the MATLAB path you can run the GUI displaying a particular folder. To do so, pass the <code>dir</code> function as a string for the first input argument, and a string that specifies the path to the folder for the second input argument. For instance, from the Command Window, run the following to have the list box display the files in <code>C: \myfiles</code>:

```
lbox2('dir','C:\my files')
```

The following code from lbox2.m shows the code for lbox2_OpeningFcn, which sets the list box folder to:

- The current folder, if no folder is specified.
- The specified folder, if a folder is specified.

```
function lbox2_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to untitled (see VARARGIN)
% Choose default command line output for lbox2
handles.output = hObject:
```

```
% Update handles structure
guidata(hObject, handles);
if nargin == 3,
    initial dir = pwd;
elseif nargin > 4
    if strcmpi(varargin{1},'dir')
        if exist(varargin{2}, 'dir')
            initial dir = varargin{2};
            errordlg({'Input argument must be a valid',...
                      'folder'}, 'Input Argument Error!')
            return
        end
    else
        errordlg('Unrecognized input argument',...
                  'Input Argument Error!');
        return;
    end
end
% Populate the listbox
load listbox(initial dir,handles)
```

Load the List Box

A local function loads items into the list box. This local function accepts the path to a folder and the handles structure as input arguments and performs these steps:

- Changes to the specified folder so that the GUI can navigate up and down the tree, as required.
- Uses the dir command to get a list of files in the specified folder and to determine
 which name is a folder and which is a file. dir returns a structure (dir_struct)
 with two fields, name and isdir, containing this information.
- Sorts the file and folder names (sortrows) and saves the sorted names and other information in the handles structure so that this information can be passed to other functions.

The name structure field is passed to sortrows as a cell array, which is transposed to get one file name per row. The isdir field and the sorted index values, sorted index, are saved as vectors in the handles structure.

- Calls guidata to save the handles structure.
- Sets the list box String property to display the file and folder names and set the Value property to 1, ensuring that Value never exceeds the number of items in String, because MATLAB software updates the Value property only when a selection occurs; not when the contents of String changes.

• Displays the current folder in the text box by setting its **String** property to the output of the pwd command.

The load_listbox function is called by the opening function, as well as by the list box callback.

```
function load_listbox(dir_path, handles)
cd (dir_path)
dir_struct = dir(dir_path);
[sorted_names,sorted_index] = sortrows({dir_struct.name}');
handles.file_names = sorted_names;
handles.is_dir = [dir_struct.isdir];
handles.sorted_index = sorted_index;
guidata(handles.figure1,handles)
set(handles.listbox1,'String',handles.file_names,...
    'Value',1)
set(handles.text1,'String',pwd)
```

Code List Box Behavior

The listbox1_Callback code handles only one case: a double-click of an item. Double clicking is the standard way to open a file from a list box. If the selected item is a file, it is passed to the open command; if it is a folder, the GUI changes to that folder and lists its contents.

Define how to open file types

The open command can handle a number of different file types, however, the callback treats FIG-files differently. Instead of opening the FIG-file as a standalone figure, it opens it with guide for editing.

Determine which item was selected

Since a single click of an item also invokes the list box callback, you must query the figure SelectionType property to determine when you have performed a double click. A double-click of an item sets the SelectionType property to open.

All the items in the list box are referenced by an index from 1 to n. A value of 1 refers to the first item, and a value of n is the index of the nth item. The software saves this index in the list box Value property.

The callback uses this index to get the name of the selected item from the list of items contained in the String property.

Determine whether the selected item is a file or directory

The load_listbox function uses the dir command to obtain a list of values that indicate whether an item is a file or folder. These values (1 for folder, 0 for file) are saved in the handles structure. The list box callback queries these values to determine if current selection is a file or folder and takes the following action:

- If the selection is a folder change to the folder (cd) and call load_listbox again to populate the list box with the contents of the new folder.
- If the selection is a file get the file extension (fileparts) to determine if it is a FIG-file, which is opened with guide. All other file types are passed to open.

The open statement is called within a try, catch block to capture errors in an error dialog box (errordlg), instead of returning to the command line.

You can extend the file types that the open command recognizes to include any file having a three-character extension. Do this by creating a MATLAB code file with the name openxyz.m. xyz is the file extension for the type of files to be handled. Do not, however, take this approach for opening FIG-files, because openfig.m is a MATLAB function which is needed to open GUIs. For more information, see open and openfig.

listbox1 Callback code

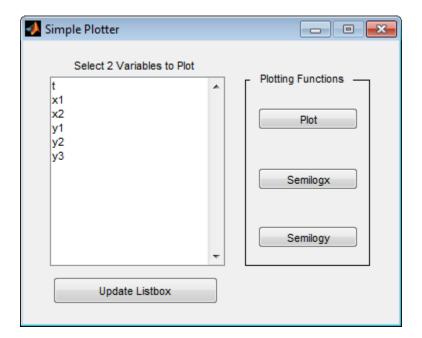
```
function listbox1 Callback(hObject, eventdata, handles)
get(handles.figure1, 'SelectionType');
% If double click
if strcmp(get(handles.figure1, 'SelectionType'), 'open')
    index selected = get(handles.listbox1, 'Value');
    file list = get(handles.listbox1, 'String');
    % Item selected in list box
    filename = file list{index selected};
    % If folder
    if handles.is dir(handles.sorted index(index selected))
        cd (filename)
        % Load list box with new folder.
        load listbox(pwd,handles)
    else
        [path,name,ext] = fileparts(filename);
        switch ext
            case '.fig'
                % Open FIG-file with guide command.
                guide (filename)
            otherwise
```

Plot Workspace Variables in a GUIDE GUI

In this section...

"About the Example" on page 9-52

"Read Workspace Variables" on page 9-53


"Read Selections from List Box" on page 9-54

About the Example

This example shows how to create a GUI that uses a list box to display names of variables in the base workspace, and then plot them. Initially, no variable names are selected in the list box. The GUI provides controls to:

- · Update the list.
- · Select multiple variables in the list box. Exactly two variables must be selected.
- Create linear, semilogx and semilogy line graphs of selected variables.

The GUI evaluates the plotting commands in the base workspace. It does no validation before plotting. When you use the GUI, you are responsible for selecting pairs of variables that can be plotted against one another. The top-most selection is used as the *x*-variable, the lower one as the *y*-variable.

To get and view the example code:

1 Copy the example FIG-file and code file to your current (writeable) folder and open the FIG-file in GUIDE with the following commands:

```
copyfile(fullfile(docroot, 'techdoc','creating_guis',...
'examples','lb.*')), fileattrib('lb.*', '+w')
quide lb.fiq
```

From GUIDE Layout Editor, click the Editor button **2**.

The lb.m code displays in the MATLAB Editor.

Read Workspace Variables

When the GUI initializes, it queries the workspace variables and sets the list box String property to display these variable names. Adding the following local function to the GUI code, 1b.m, accomplishes this using evalin to execute the who command in the base workspace. The who command returns a cell array of strings, which are used to populate the list box.

```
function update_listbox(handles)
vars = evalin('base','who');
set(handles.listbox1,'String',vars)
```

The function input argument is the handles structure set up by the GUIDE. This structure contains the handle of the list box, as well as the handles of all other components in the GUI.

The callback for the **Update Listbox** push button also calls **update listbox**.

Read Selections from List Box

To use the GUI, you select two variables from the workspace and then choose one of three plot commands to create a graph: plot, semilogx, or semilogy.

No callback for the list box exists in the GUI code file. One is not needed because the plotting actions are initiated by push buttons.

Enable Multiple Selection

Use the Property Inspector to set these properties on the list box. To enable multiple selection in a list box, change the default values of the Min and Max properties so that Max - Min > 1.

Selecting Multiple Items

List box selection follows the standard for most systems:

- Ctrl+click left mouse button noncontiguous multi-item selection
- Shift+click left mouse button contiguous multi-item selection

Use one of these techniques to select the two variables required to create the plot.

Return Variable Names for the Plotting Functions

The local function, get_var_names, returns the two variable names that are selected when you click one of the three plotting buttons. The function does these tasks:

- Gets all the items in the list box from the String property.
- · Gets the indices of the selected items from the Value property.

 Returns two string variables, if there are two items selected. Otherwise get_var_names displays an error dialog box stating that you must select two variables.

Here is the code for get_var_names:

```
function [var1,var2] = get_var_names(handles)
list_entries = get(handles.listbox1,'String');
index_selected = get(handles.listbox1,'Value');
if length(index_selected) ~= 2
  errordlg('You must select two variables',...
    'Incorrect Selection','modal')
else
  var1 = list_entries{index_selected(1)};
  var2 = list_entries{index_selected(2)};
end
```

Callbacks for the Plotting Buttons

The callbacks for the plotting buttons call <code>get_var_names</code> to get the names of the variables to plot and then call <code>evalin</code> to execute the plot commands in the base workspace.

For example, here is the callback for the plot function:

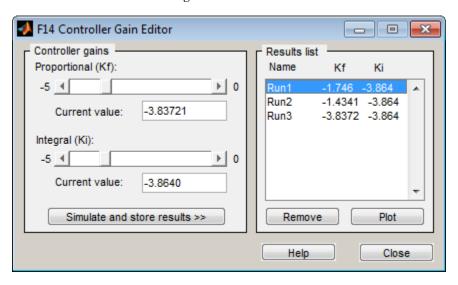
```
function plot_button_Callback(hObject, eventdata, handles)
[x,y] = get_var_names(handles);
evalin('base',['plot(' x ',' y ')'])
```

The command to evaluate is created by concatenating the strings and variables, and looks like this:

```
try
    evalin('base',['semilogx(',x,',',y,')'])
catch ex
    errordlg(...
    ex.getReport('basic'),'Error generating semilogx plot','modal')
end
```

The try/catch block handles errors resulting from attempting to graph inappropriate data. When evaluated, the result of the command is:

```
plot(x,y)
```


The other two plotting buttons work in the same way, resulting in semilogx(x,y) and semilogy(x,y).

GUI for Setting Simulink Model Parameters

In this section... "About the Example" on page 9-57 "How to Use the Simulink Parameters GUI" on page 9-58 "Run the GUI" on page 9-59 "Program the Slider and Edit Text Components" on page 9-60 "Run the Simulation from the GUI" on page 9-62 "Remove Results from List Box" on page 9-64 "Plot Results Data" on page 9-64 "The GUI Help Button" on page 9-66 "Close the GUI" on page 9-66 "The List Box Callback and Create Function" on page 9-67

About the Example

This example shows how to create a GUIDE GUI that sets the parameters of a Simulink model, runs the simulation, and plots the results in a figure window. The following figure shows the GUI after running three simulations with different values for controller gains.

To get and view the example code:

1 Copy the example FIG-file and code file to your current (writeable) folder and open the FIG-file in GUIDE with the following commands:

```
copyfile(fullfile(docroot, 'techdoc','creating_guis','examples',...
'f14ex*.*')), fileattrib('f14ex*.*', '+w')
guide f14ex.fig
```

From GUIDE Layout Editor, click the Editor button **2**.

The f14ex.m code displays in the MATLAB Editor.

How to Use the Simulink Parameters GUI

Note: You must have Simulink installed for this GUI to run. The first time you run the GUI, Simulink opens (if it is not already running) and loads the f14 example model. This can take several seconds.

The GUI has a **Help** button. Clicking it opens an HTML file, f14ex_help.html, in the Help Browser. This file, which resides in the examples folder along with the GUI files, contains the following five sections of help text:

F14 Controller Gain Editor

You can use the F14 Controller Gain Editor to analyze how changing the gains used in the Proportional-Integral Controller affect the aircraft's angle of attack and the amount of G force the pilot feels.

Note that the Simulink diagram f14.mdl must be open to run this GUI. If you close the F14 Simulink model, the GUI reopens it whenever it requires the model to execute.

Change the Controller Gains

You can change gains in two blocks:

- 1 The Proportional gain (Kf) in the Gain block
- 2 The Integral gain (Ki) in the Transfer Function block

You can change either of the gains in one of the two ways:

- 1 Move the slider associated with that gain.
- 2 Type a new value into the Current value edit field associated with that gain.

The block's values are updated as soon as you enter the new value in the GUI.

Run the Simulation

Once you have set the gain values, you can run the simulation by clicking the **Simulate** and store results button. The simulation time and output vectors are stored in the Results list.

Plot the Results

You can generate a plot of one or more simulation results by selecting the row of results (Run1, Run2, etc.) in the **Results list** that you want to plot and clicking the **Plot** button. If you select multiple rows, the graph contains a plot of each result.

The graph is displayed in a figure, which is cleared each time you click the **Plot** button. The figure's handle is hidden so that only the GUI can display graphs in this window.

Remove Results

To remove a result from the **Results list**, select the row or rows you want to remove and click the **Remove** button.

Run the GUI

The GUI is nonblocking and nonmodal because it is designed to be used as an analysis tool.

GUI Options Settings

This GUI uses the following GUI option settings:

Resize behavior: Non-resizableCommand-line accessibility: Off

· GUI Options selected:

Generate callback function prototypes

GUI allows only one instance to run

Open the Simulink Block Diagrams

This example is designed to work with the f14 Simulink model. Because the GUI sets parameters and runs the simulation, the f14 model must be open when the GUI is displayed. When the GUI runs, the model_open local function executes. The model_open function performs these tasks:

- Determines if the model is open (find system).
- Opens the block diagram for the model and the subsystem where the parameters are being set, if not open already (open system).
- Changes the size of the controller Gain block so it can display the gain value (set_param).
- · Brings the GUI forward so it is displayed on top of the Simulink diagrams (figure).
- Sets the block parameters to match the current settings in the GUI.

Here is the code for model open:

```
function model_open(handles)
if isempty(find_system('Name','f14')),
  open_system('f14'); open_system('f14/Controller')
  set_param('f14/Controller/Gain','Position',[275 14 340 56])
  figure(handles.F14ControllerEditor)
  set_param('f14/Controller Gain','Gain',...
    get(handles.KfCurrentValue,'String'))
  set_param(...
    'f14/Controller/Proportional plus integral compensator',...
    'Numerator',...
    get(handles.KiCurrentValue,'String'))
end
```

Program the Slider and Edit Text Components

Each slider is coupled to an edit text component to accomplish these tasks:

- Display the current value of the slider in the edit text box.
- · Update the slider when you enter a value into the edit text box.
- Update the appropriate model parameters when you interact with the slider and edit text box.

Slider Callback

The GUI uses two sliders to specify block gains because these components enable the selection of continuous values within a specified range. When you change the slider value, the callback performs these tasks:

- Calls model_open to ensure that the Simulink model is open so that simulation parameters can be set.
- Gets the new slider value.
- Sets the value of the **Current value** edit text component to match the slider.
- Sets the appropriate block parameter to the new value (set param).

Here is the callback for the **Proportional (Kf)** slider:

```
function KfValueSlider_Callback(hObject, eventdata, handles)
% Ensure model is open.
model_open(handles)
% Get the new value for the Kf Gain from the slider.
NewVal = get(hObject, 'Value');
% Set the value of the KfCurrentValue to the new value
% set by slider.
set(handles.KfCurrentValue,'String',NewVal)
% Set the Gain parameter of the Kf Gain Block to the new value.
set param('f14/Controller/Gain','Gain',num2str(NewVal))
```

While a slider returns a number and the edit text requires a string, uicontrols automatically convert the values to the correct type.

The callback for the **Integral (Ki)** slider follows an approach similar to the **Proportional (Kf)** slider's callback.

Current Value Edit Text Callback

The edit text box enables you to enter a value for the respective parameter. When you click another component in the GUI after entering data into the text box, the edit text callback performs these tasks:

- Calls model_open to ensure that the Simulink model is open so that it can set simulation parameters.
- Converts the string returned by the edit box String property to a double (str2double).
- · Checks whether the entered value is within the range of the slider:

If the value is out of range, the edit text **String** property is set to the value of the slider (rejecting the number you entered).

If the value is in range, the slider Value property is updated to the new value.

• Sets the appropriate block parameter to the new value (set param).

Here is the callback for the Kf **Current value** text box:

```
function KfCurrentValue Callback(hObject, eventdata, handles)
% Ensure model is open.
model open(handles)
% Get the new value for the Kf Gain.
NewStrVal = get(hObject, 'String');
NewVal = str2double(NewStrVal);
% Check that the entered value falls within the allowable range.
if isempty(NewVal) || (NewVal< -5) || (NewVal>0),
   % Revert to last value, as indicated by KfValueSlider.
   OldVal = get(handles.KfValueSlider, 'Value');
   set(hObject, 'String',OldVal)
else % Use new Kf value
   % Set the value of the KfValueSlider to the new value.
   set(handles.KfValueSlider, 'Value', NewVal)
   % Set the Gain parameter of the Kf Gain Block
   % to the new value.
   set param('f14/Controller/Gain','Gain',NewStrVal)
end
```

The callback for the Ki Current value follows a similar approach.

Run the Simulation from the GUI

The GUI **Simulate and store results** button callback runs the model simulation and stores the results in the handles structure. Storing data in the handles structure simplifies the process of passing data to other local function since this structure can be passed as an argument.

When you click the **Simulate and store results** button, the callback performs these tasks:

- Calls Sim, which runs the simulation and returns the data that is used for plotting.
- Creates a structure to save the results of the simulation, the current values of the simulation parameters set by the GUI, and the run name and number.

- Stores the structure in the handles structure.
- Updates the list box String to list the most recent run.

Here is the **Simulate and store results** button callback:

```
function SimulateButton Callback(hObject, eventdata, handles)
[timeVector, stateVector, outputVector] = sim('f14');
% Retrieve old results data structure
if isfield(handles, 'ResultsData') &
~isempty(handles.ResultsData)
ResultsData = handles.ResultsData;
% Determine the maximum run number currently used.
maxNum = ResultsData(length(ResultsData)).RunNumber;
ResultNum = maxNum+1;
else % Set up the results data structure
ResultsData = struct('RunName',[],'RunNumber',[],...
               'KiValue',[],'KfValue',[],'timeVector',[],...
               'outputVector',[]);
ResultNum = 1;
end
if isequal(ResultNum, 1),
% Enable the Plot and Remove buttons
set([handles.RemoveButton, handles.PlotButton], 'Enable', 'on')
end
% Get Ki and Kf values to store with the data and put in the
results list.
Ki = get(handles.KiValueSlider, 'Value');
Kf = get(handles.KfValueSlider, 'Value');
ResultsData(ResultNum).RunName = ['Run',num2str(ResultNum)];
ResultsData(ResultNum).RunNumber = ResultNum;
ResultsData(ResultNum).KiValue = Ki;
ResultsData(ResultNum).KfValue = Kf;
ResultsData(ResultNum).timeVector = timeVector;
ResultsData(ResultNum).outputVector = outputVector;
% Build the new results list string for the listbox
ResultsStr = get(handles.ResultsList, 'String');
if isequal(ResultNum,1)
ResultsStr = {['Run1',num2str(Kf),' ',num2str(Ki)]};
else
ResultsStr = [ResultsStr:...
{['Run',num2str(ResultNum),' ',num2str(Kf),' ', ...
num2str(Ki)|}|;
end
set(handles.ResultsList, 'String', ResultsStr);
```

```
% Store the new ResultsData
handles.ResultsData = ResultsData;
guidata(hObject, handles)
```

Remove Results from List Box

The GUI **Remove** button callback deletes any selected item from the **Results list** list box. It also deletes the corresponding run data from the handles structure. When you click the **Remove** button, the callback performs these tasks:

- Determines which list box items are selected when you click the **Remove** button and remove those items from the list box String property by setting each item to the empty matrix [].
- Removes the deleted data from the handles structure.
- Displays the string <empty> and disables the **Remove** and **Plot** buttons (using the **Enable** property), if all the items in the list box are removed.
- Save the changes to the handles structure (guidata).

Here is the **Remove** button callback:

```
function RemoveButton_Callback(hObject, eventdata, handles)
currentVal = get(handles.ResultsList,'Value');
resultsStr = get(handles.ResultsList, 'String');
numResults = size(resultsStr,1);
% Remove the data and list entry for the selected value
resultsStr(currentVal) =[];
handles.ResultsData(currentVal)=[];
% If there are no other entries, disable the Remove and Plot
button
% and change the list string to <empty>
if isequal(numResults,length(currentVal)),
 resultsStr = {'<empty>'};
 currentVal = 1:
set([handles.RemoveButton, handles.PlotButton], 'Enable', 'off')
% Ensure that list box Value is valid, then reset Value and String
currentVal = min(currentVal,size(resultsStr,1));
set(handles.ResultsList, 'Value', currentVal, 'String', resultsStr)
% Store the new ResultsData
guidata(hObject, handles)
```

Plot Results Data

The GUI **Plot** button callback creates a plot of the run data and adds a legend. The data to plot is passed to the callback in the handles structure, which also contains the gain

settings used when the simulation ran. When you click the **Plot** button, the callback performs these tasks:

- Collects the data for each run selected in the **Results list**, including two variables (time vector and output vector) and a color for each result run to plot.
- · Generates a string for the legend from the stored data.
- Creates the figure and axes for plotting and saves the handles for use by the Close button callback.
- Plots the data, adds a legend, and makes the figure visible.

Plot Into the Hidden Figure

The figure that contains the plot is created as invisible and then made visible after adding the plot and legend. To prevent this figure from becoming the target for plotting commands issued at the command line or by other GUIs, its HandleVisibility and IntegerHandle properties are set to 'off'. This means the figure is also hidden from the plot and legend commands.

Follow these steps to plot into a hidden figure:

- 1 Save the figure object when you create it.
- 2 Create an axes, set its Parent property to the figure object, and save the axes object.
- 3 Create the plot (which is one or more line objects), save these line objects, and set their Parent properties to the handle of the axes.
- **4** Make the figure visible.

Plot Button Callback Listing

Here is the **Plot** button callback.

```
function PlotButton_Callback(hObject, eventdata, handles)
currentVal = get(handles.ResultsList,'Value');
% Get data to plot and generate command string with color
% specified
legendStr = cell(length(currentVal),1);
plotColor = {'b','g','r','c','m','y','k'};
for ctVal = 1:length(currentVal);
PlotData{(ctVal*3)-2} =
handles.ResultsData(currentVal(ctVal)).timeVector;
PlotData{(ctVal*3)-1} =
handles.ResultsData(currentVal(ctVal)).outputVector;
numColor = ctVal - 7*( floor((ctVal-1)/7) );
PlotData{ctVal*3} = plotColor{numColor};
```

```
legendStr{ctVal} = ...
      [handles.ResultsData(currentVal(ctVal)).RunName, '; Kf=',...
      num2str(handles.ResultsData(currentVal(ctVal)).KfValue),...
      '; Ki=', ...
      num2str(handles.ResultsData(currentVal(ctVal)).KiValue)];
% If necessary, create the plot figure and store in handles
% structure
if ~isfield(handles, 'PlotFigure') ||...
   ~ishandle(handles.PlotFigure),
 handles.PlotFigure = ...
        figure('Name', 'F14 Simulation Output',...
        'Visible', 'off', 'NumberTitle', 'off',...
        'HandleVisibility', 'off', 'IntegerHandle', 'off');
 handles.PlotAxes = axes('Parent', handles.PlotFigure);
guidata(hObject, handles)
% Plot data
pHandles = plot(PlotData{:}, 'Parent', handles.PlotAxes);
% Add a legend, and bring figure to the front
legend(pHandles(1:2:end),legendStr{:})
% Make the figure visible and bring it forward
figure(handles.PlotFigure)
```

The GUI Help Button

The GUI **Help** button callback displays an HTML file in the MATLAB Help browser. It uses two commands:

- The which command returns the full path to the file when it is on the MATLAB path
- The web command displays the file in the Help browser.

This is the **Help** button callback.

```
function HelpButton_Callback(hObject, eventdata, handles)
HelpPath = which('f14ex_help.html');
web(HelpPath);
```

You can also display the help document in a Web browser or load an external URL. For a description of these options, see the documentation for the web function.

Close the GUI

The GUI **Close** button callback closes the plot figure, if one exists and then closes the GUI. The handle of the plot figure and the GUI figure are available from the handles structure. The callback executes two steps:

- Checks to see if there is a PlotFigure field in the handles structure and if it contains a valid figure handle (you could have closed the figure manually).
- · Closes the GUI figure.

This is the **Close** button callback:

The List Box Callback and Create Function

This GUI does not use the list box callback, but the push buttons reference the list box in their callbacks (Simulate and store results, Remove, and Plot). GUIDE automatically inserts an empty callback function when you add the list box to the layout. It also sets the Callback property to execute this local function whenever users interact with the list box.

You can delete the listbox callback function from the GUI code and also delete the list box's Callback property value in the Property Inspector.

Set the Background to White

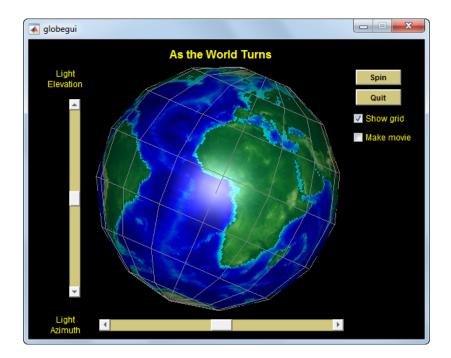
The list box create function enables you to determine the background color of the list box. The following code shows the create function for the list box that is tagged ResultsList:

```
function ResultsList_CreateFcn(hObject, eventdata, handles)
% Hint: listbox controls usually have a white background, change
% 'usewhitebg' to 0 to use default. See ISPC and COMPUTER.
usewhitebg = 1;
if usewhitebg
    set(hObject, 'BackgroundColor', 'white');
else
set(hObject, 'BackgroundColor',...
    get(groot, 'defaultUicontrolBackgroundColor'));
end
```

Animation with Slider Controls in a GUIDE GUI

In this section...

"About the Example" on page 9-68


"Design the 3-D Globe GUI" on page 9-69

"Graphics Techniques Used in the 3-D Globe GUI" on page 9-74

About the Example

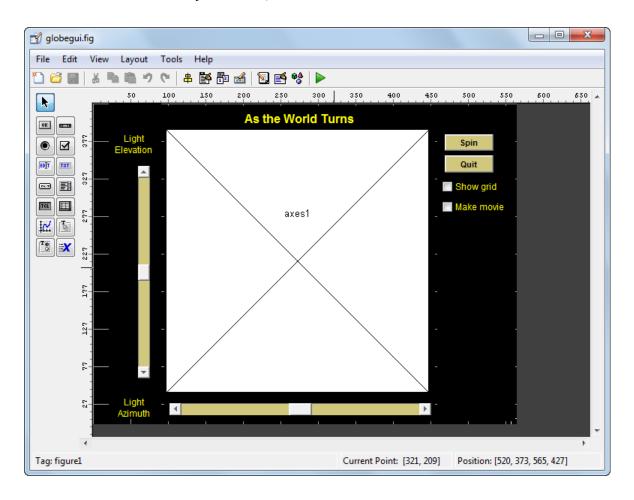
This example shows how to create a GUI with 3-D axes in which the Earth spins on its axis. It accepts no inputs, but it reads a matrix of topographic elevations for the whole Earth. The GUI provides controls to:

- · Start and stop the rotation.
- · Change lighting direction.
- Display a latitude-longitude grid (or *graticule*).
- · Save the animation as a movie in a MAT-file.
- Exit the application.

To get and view the example code:

1 Copy the example FIG-file and code file to your current (writeable) folder and open the FIG-file in GUIDE with the following commands:

```
copyfile(fullfile(docroot, 'techdoc','creating_guis','examples',...
'globegui*.*')), fileattrib('globegui*.*', '+w')
guide globegui.fig
```


2 From GUIDE Layout Editor, click the Editor button **2**.

The ${\tt globegui.m}$ ${\tt code}$ displays in the MATLAB Editor.

Design the 3-D Globe GUI

- "Alternate the Label of a Push Button" on page 9-71
- "Interrupt the Spin Callback" on page 9-72
- "Make a Movie of the Animation" on page 9-73

In the GUIDE Layout Editor, the GUI looks like this.

The GUI includes three uipanels that you can barely see in this figure because they are entirely black. Using uipanels helps the graphic functions work more efficiently.

The axes CreateFcn (axes1_CreateFcn) initializes the graphic objects. It executes once, no matter how many times the GUI is opened.

The **Spin** button's callback (**spinstopbutton_Callback**), which contains a **while** loop for rotating the spherical surface, conducts the animation.

The two sliders allow you to change light direction during animation and function independently, but they query one another's value because both parameters are needed to specify a view.

The **Show grid** check box toggles the **Visible** property of the graticule surface object. The axes1_CreateFcn initializes the graticule and then hides it until you select this option.

The **Spin** button's callback reads the **Make movie** check box value to accumulate movie frames and saves the movie to a MAT-file when rotation is stopped or after one full revolution, whichever comes first. (You must select **Make movie** before spinning the globe.)

The Property Inspector was used to customize the uicontrols and text by:

- Setting the figure Color to black, as well as the BackgroundColor, ForegroundColor, and ShadowColor of the three uipanels. (They are used as containers only, so they do not need to be visible.)
- Coloring all static text yellow and uicontrol backgrounds either black or yellow-gray.
- · Giving all uicontrols mnemonic names in their Tag string.
- Setting the FontSize for uicontrols to 9 points.
- Specifying nondefault Min and Max values for the sliders.
- · Adding tooltip strings for some controls.

The following sections describe the interactive techniques used in the GUI.

Alternate the Label of a Push Button

The top right button, initially labeled **Spin**, changes to **Stop** when clicked, and back to **Spin** clicked a second time. It does this by comparing its **String** property to a pair of strings stored in the **handles** structure as a cell array. Insert this data into the handles structure in **spinstopbutton_CreateFcn**, as follows:

```
function spinstopbutton_CreateFcn(hObject, eventdata, handles)
handles.Strings = {'Spin';'Stop'};
guidata(hObject, handles);
```

The call to guidata saves the updated handles structure for the figure containing hObject, which is the spinstopbutton push button object. GUIDE named this object pushbutton1. It was renamed by changing its Tag property in the Property Inspector. As a result, GUIDE changed all references to the component in the GUI' code file when

the GUI was saved. For more information on setting tags, see "Identify the Axes" on page 9-23 in the previous example.

The handles.Strings data is used in the spinstopbutton_Callback function, which includes the following code for changing the label of the button:

```
str = get(hObject, 'String');
state = find(strcmp(str, handles.Strings));
set(hObject, 'String', handles.Strings{3-state});
```

The find function returns the index of the string that matches the button's current label. The call to set switches the label to the alternative string. If state is 1, 3-state sets it to 2. If state is 2, it sets it to 1.

Interrupt the Spin Callback

If you click the **Spin/Stop** button when its label is **Stop**, its callback is looping through code that updates the display by advancing the rotation of the surface objects. The **spinstopbutton_Callback** contains code that listens to such events, but it does not use the **events** structure to accomplish this. Instead, it uses this piece of code to exit the display loop:

```
if find(strcmp(get(hObject, 'String'), handles.Strings)) == 1
    handles.azimuth = az;
    guidata(hObject, handles);
    break
end
```

Entering this block of code while spinning the view exits the while loop to stop the animation. First, however, it saves the current azimuth of rotation for initializing the next spin. (The handles structure can store any variable, not just handles.) If you click the (now) **Spin** button, the animation resumes at the place where it halted, using the cached azimuth value.

When you click **Quit**, the GUI destroys the figure, exiting immediately. To avoid errors due to quitting while the animation is running, the while loop must know whether the axes object still exists:

```
while ishandle(handles.axes1)
  % plotting code
   ...
end
```

You can write the spinstopbutton_Callback function without a while loop, which avoids you having to test that the figure still exists. You can, for example, create a timer

object that handles updating the graphics. This example does not explore the technique, but you can find information about programming timers in "Use a MATLAB Timer Object".

Make a Movie of the Animation

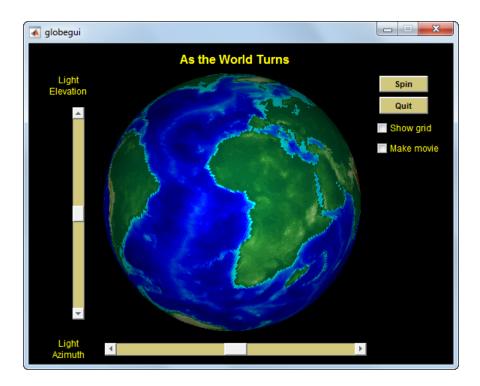
Selecting the **Make movie** check box before clicking **Spin** causes the application to record each frame displayed in the while loop of the **spinstopbutton_Callback** routine. When you select this check box, the animation runs more slowly because the following block of code executes:

```
filming = handles.movie;
    ...
if ishandle(handles.axes1) && filming > 0 && filming < 361
    globeframes(filming) = getframe; % Capture axes in movie
    filming = filming + 1;
end</pre>
```

Because it is the value of a check box, handles.movie is either 0 or 1. When it is 1, a copy (filming) of it keeps a count of the number of frames saved in the globeframes matrix (which contains the axes CData and colormap for each frame). You cannot toggle saving the movie on or off while the globe is spinning, because the while loop code does not monitor the state of the **Make movie** check box.

The ishandle test prevents the getframe from generating an error if the axes is destroyed before the while loop finishes.

When the while loop terminates, the callback prints the results of capturing movie frames to the Command Window and writes the movie to a MAT-file:


```
if (filming)
    filename = sprintf('globe%i.mat',filming-1);
    disp(['Writing movie to file ' filename]);
    save (filename, 'globeframes')
end
```

Note: Before creating a movie file with the GUI, make sure that you have write permission for the current folder.

The file name of the movie ends with the number of frames it contains. Supposing the movie's file name is globe360.mat, you play it with:

load globe360
axis equal off
movie(globeframes)

The playback looks like this.

Graphics Techniques Used in the 3-D Globe GUI

To learn more about how this GUI uses Handle Graphics to create and view 3-D objects, read the following sections:

- "Create the Graphic Objects" on page 9-75
- "Texture and Color the Globe" on page 9-75
- "Plot the Graticule" on page 9-76
- "Orient the Globe and Graticule" on page 9-76

• "Light the Globe and Shift the Light Source" on page 9-77

Create the Graphic Objects

The axes1_CreateFcn function initializes the axes, the two objects displayed in it, and two hgtransform objects that affect the rotation of the globe:

- The globe is a surfaceplot generated by surface.
- The geographic graticule (lines of latitude and longitude), also a surfaceplot object, generated by a call to mesh.

Data for these two objects are rectangular *x-y-z* grids generated by the **sphere** function. The globe's grid is 50-by-50 and the graticule grid is 8-by-15. (Every other row of the 15-by-15 grid returned by **sphere** is removed to equalize its North-South and East-West spans when viewed on the globe.)

The axes x-, y-, and z-limits are set to [-1.02 1.02]. Because the graphic objects are unit spheres, this leaves a little space around them while constraining all three axes to remain the same relative and absolute size. The graticule grid is also enlarged by 2%, which is barely enough to prevent the opaque texture-mapped surface of the globe from obscuring the graticule. If you watch carefully, you can sometimes see missing pieces of graticule edges as the globe spins.

Texture and Color the Globe

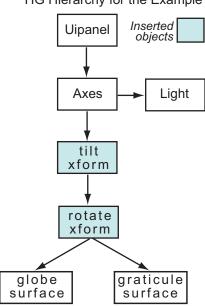
Code in the axes1_CreateFcn sets the CData for the globe to the 180-by-360 (one degree) topo terrain grid by setting its FaceColor property to 'texturemap'. You can use any image or grid to texture a surface. Specify surface properties as a struct containing one element per property that you must set, as follows:

```
props.FaceColor= 'texture';
props.EdgeColor = 'none';
props.FaceLighting = 'gouraud';
props.Cdata = topo;
props.Parent = hgrotate;
hsurf = surface(x,y,z,props);
colormap(cmap)
```

Tip You can create MATLAB structs that contain values for sets of parameters and provide them to functions instead of parameter-value pairs, and save the structs to MAT-files for later use.

The surface function plots the surface into the axes. Setting the Parent of the surface to hgrotate puts the surface object under the control of the hgtransform that spins the globe (see the illustration in "Orient the Globe and Graticule" on page 9-76). By setting EdgeColor to 'none', the globe displays face colors only, with no grid lines (which, by default, display in black). The colormap function sets the colormap for the surface to the 64-by-3 colormap cmap defined in the code, which is appropriate for terrain display. While you can use more colors, 64 is sufficient, given the relative coarseness of the texture map (1-by-1 degree resolution).

Plot the Graticule


Unlike the globe grid, the graticule grid displays with no face colors and gray edge color. (You turn the graticule grid on and off by clicking the **Show grid** button.) Like the terrain map, it is a surfaceplot object; however, the mesh function creates it, rather than the surface function, as follows:

The state of the **Show grid** button is initially **off**, causing the graticule not to display. **Show grid** toggles the mesh object's **Visible** property.

As mentioned earlier, enlarging the graticule by 2 percent before plotting prevents the terrain surface from obscuring it.

Orient the Globe and Graticule

The globe and graticule rotate as if they were one object, under the control of a pair of hgtransform objects. Within the figure, the HG objects are set up in this hierarchy.

HG Hierarchy for the Example

The tilt transform applies a rotation about the x-axis of 0.5091 radians (equal to 23.44 degrees, the inclination of the Earth's axis of rotation). The rotate transform initially has a default identity matrix. The spinstopbutton Callback subsequently updates the matrix to rotate about the z-axis by 0.01745329252 radians (1 degree) per iteration, using the following code:

```
az = az + 0.01745329252;
set(hgrotate, 'Matrix', makehgtform('zrotate', az));
drawnow
                          % Refresh the screen
```

Light the Globe and Shift the Light Source

A light object illuminates the globe, initially from the left. Two sliders control the light's position, which you can manipulate whether the globe is standing still or rotating. The light is a child of the axes, so is not affected by either of the hatransforms. The call to light uses no parameters other than its altitude and an azimuth:

```
hlight = camlight(0,0);
```

After creating the light, the axes1 CreateFcn adds some handles and data that other callbacks need to the handles structure:

```
handles.light = hlight;
handles.tform = hgrotate;
handles.hmesh = hmesh;
handles.azimuth = 0.;
handles.cmap = cmap;
guidata(gcf,handles);
The call to guidata caches the data added to handles.
```

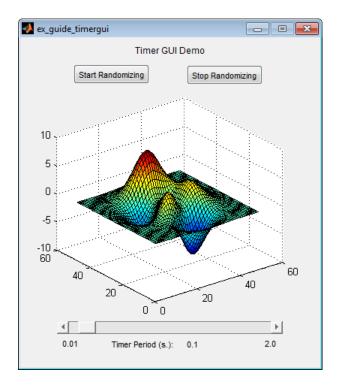
Moving either of the sliders sets both the elevation and the azimuth of the light source, although each slider changes only one. The code in the callback for varying the elevation of the light is

The callback for the light azimuth slider works similarly, querying the elevation slider's setting to keep that value from being changed in the call to lightangle.

Automatically Refresh Plot in a GUIDE GUI

In this section...

"About the Example" on page 9-79


"How the GUI Implements the Timer" on page 9-81

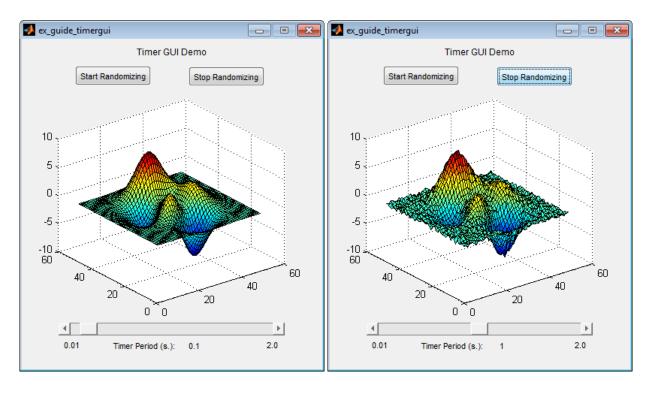
About the Example

This example shows how to refresh a display by incorporating a timer in a GUI that updates data. Timers are MATLAB objects. Programs use their properties and methods to schedule tasks, update information, and time out processes. For example, you can set up a timer to acquire real-time data at certain intervals, which your GUI then analyzes and displays.

The GUI displays a surface plot of the peaks function and contains three uicontrols:

- The **Start Randomizing** push button Starts the timer running, which executes at a rate determined by the slider control. At each iteration, random noise is added to the surface plot.
- The **Stop Randomizing** push button Halts the timer, leaving the surface plot in its current state until you click the **Start Randomizing** button again.
- The **Timer Period** slider Speeds up and slows down the timer, changing its period within a range of 0.01 to 2 seconds.

To get and view the example code:


1 Copy the example FIG-file and code file to your current (writeable) folder and open the FIG-file in GUIDE with the following commands:

```
copyfile(fullfile(docroot, 'techdoc','creating_guis','examples',...
'ex_guide_timergui*.*')), fileattrib('ex_guide_timergui*.*', '+w')
guide ex_guide_timergui.fig
```

From the GUIDE Layout Editor, click the Editor button .

The ex_guide_timergui.m code displays in the MATLAB Editor.

The following figures show the GUI when you run it. The left figure shows the initial state of the GUI. The right figure shows the GUI after running the timer for 5 seconds at its default period of 1 count per second.

For details about timer properties, methods, and events, see "Use a MATLAB Timer Object" and the timer reference page.

How the GUI Implements the Timer

Each callback in the GUI either creates, modifies, starts, stops, or destroys the timer object. The following sections describe what each callbacks does.

- "ex_guide_timergui_OpeningFcn" on page 9-82
- "startbtn_Callback" on page 9-82
- "stopbtn_Callback" on page 9-82
- "periodsldr_Callback" on page 9-82
- "update_display" on page 9-83
- "figure1_CloseRequestFcn" on page 9-83

ex_guide_timergui_OpeningFcn

```
ex guide timergui OpeningFon creates the timer using the following code:
handles.timer = timer(...
                                           % Run timer repeatedly
    'ExecutionMode', 'fixedRate', ...
                                      % Initial period is 1 sec.
    'Period', 1, ...
    'TimerFcn', {@update display,hObject}); % Specify callback
The opening function also initializes the slider Min, Max, and Value properties, and sets
the slider label to display the value:
set(handles.periodsldr,'Min',0.01,'Max',2)
set(handles.periodsldr, 'Value',get(handles.timer('Period'))
set(handles.slidervalue, 'String',...
    num2str(get(handles.periodsldr, 'Value')))
A call to surf renders the peaks data in the axes, adding the surfaceplot handle to the
handles structure:
handles.surf = surf(handles.display,peaks);
Finally, a call to guidata saves the handles structure contents:
guidata(hObject,handles);
startbtn Callback
startbtn Callback calls timer start method if the timer is not already running:
if strcmp(get(handles.timer, 'Running'), 'off')
    start(handles.timer);
end
stopbtn_Callback
stopbtn Callback calls the timer stop method if the timer is currently running:
if strcmp(get(handles.timer, 'Running'), 'on')
    stop(handles.timer);
end
```

periodsldr_Callback

periodsldr_Callback is called each time you move the slider. It sets the timer period to the slider current value after removing unwanted precision:

```
% Read the slider value
```

The slider callback must stop the timer to reset its period, because timer objects do not allow their periods to vary while they are running.

update_display

update_display is the callback for the timer object. It adds Gaussian noise to the
ZData of the surface plot:

```
handles = guidata(hfigure);
Z = get(handles.surf, 'ZData');
Z = Z + 0.1*randn(size(Z));
set(handles.surf, 'ZData', Z);
```

Because update_display is not a GUIDE-generated callback, it does not include handles as one of its calling arguments. Instead, it accesses the handles structure by calling guidata. The callback gets the ZData of the surface plot from the handles.surf member of the structure. It modifies the Z matrix by adding noise using randn, and then resets the ZData of the surface plot with the modified data. It does not modify the handles structure.

figure 1_CloseRequestFcn

MATLAB calls the figure1_CloseRequestFcn when you click the close box of the GUI. The callback cleans up the application before it exits, stopping and deleting the timer object and then deleting the figure window.

```
% Necessary to provide this function to prevent timer callback
% from causing an error after GUI code stops executing.
% Before exiting, if the timer is running, stop it.
if strcmp(get(handles.timer, 'Running'), 'on')
    stop(handles.timer);
```

```
end
% Destroy timer
delete(handles.timer)
% Destroy figure
delete(hObject);
```

Create GUIs Programmatically

Lay Out a Programmatic GUI

- "Structure of a Programmatic GUI File" on page 10-2
- "Create Figures for Programmatic GUIs" on page 10-4
- "Programmatic Components" on page 10-6
- "Add Components to a Programmatic GUI" on page 10-9
- "Layout a GUI Programmatically" on page 10-40
- "Adjust Programmatic GUI Layouts Interactively" on page 10-49
- · "Customize Tabbing Behavior in a Programmatic GUI" on page 10-71
- "Create Menus for Programmatic GUIs" on page 10-75
- "Create Toolbars for Programmatic GUIs" on page 10-88
- "Fonts and Colors for Cross-Platform Compatibility" on page 10-94

Structure of a Programmatic GUI File

In this section... "File Organization" on page 10-2 "File Template" on page 10-2 "Run the GUI" on page 10-3

File Organization

Typically, a GUI code file has the following ordered sections. You can help to maintain the structure by adding comments that name the sections when you first create them.

- 1 Comments displayed in response to the MATLAB help command.
- 2 Initialization tasks such as data creation and any processing that is needed to construct the components. See "Initialize a Programmatic GUI" on page 11-2 for more information.
- **3** Construction of figure and components. For more information, see "Create Figures for Programmatic GUIs" on page 10-4 and "Add Components to a Programmatic GUI" on page 10-9.
- **4** Initialization tasks that require the components to exist, and output return. See "Initialize a Programmatic GUI" on page 11-2 for more information.
- 5 Callbacks for the components. Callbacks are the routines that execute in response to user-generated events such as mouse clicks and key strokes. See "Write Callbacks Using the Programmatic Workflow" on page 11-5 for more information.
- **6** Utility functions.

File Template

This is a template you can use to create a GUI code file:

```
function varargout = mygui(varargin)
% MYGUI Brief description of GUI.
% Comments displayed at the command line in response
% to the help command.
% (Leave a blank line following the help.)
```

- % Initialization tasks
- % Construct the components
- % Initialization tasks
- % Callbacks for MYGUI
- % Utility functions for MYGUI

end

The end statement that matches the function statement is necessary because this document treats GUI creation using nested functions.

Save the file in your current folder or at a location that is on your MATLAB path.

Run the GUI

You can display your GUI at any time by executing its code file. For example, if your GUI code file is mygui.m, type

mygui

at the command line. Provide run-time arguments as appropriate. The file must reside on your path or in your current folder.

When you execute the code, a fully functional copy of the GUI displays on the screen. If the file includes code to initialize the GUI and callbacks to service the components, you can manipulate components that it contains.

Create Figures for Programmatic GUIs

In MATLAB software, a GUI is a figure. Before you add components to it, create the figure explicitly and obtain a handle for it. In the initialization section of your file, use a statement such as the following to create the figure:

fh = figure;

where fh is the figure handle.

Note If you create a component when there is no figure, MATLAB creates a figure automatically but does not return the figure handle.

When you create the figure, you can also specify properties for the figure. The most commonly used figure properties are shown in the following table:

Property	Values	Description
MenuBar	figure, none. Default is figure.	Display or hide the MATLAB standard menu bar menus. If none and there are no user-created menus, the menu bar itself is removed.
Name	String	Title displayed in the figure window. If NumberTitle is on, this string is appended to the figure number.
NumberTitle	on, off. Default is on.	Determines whether the string 'Figure n' (where n is the figure number) is prefixed to the figure window title specified by Name.
Position	4-element vector: [distance from left, distance from bottom, width, height].	Size of the GUI figure and its location relative to the lower-left corner of the screen.
Resize	on, off. Default is on.	Determines if the user can resize the figure window with the mouse.
Toolbar	auto, none, figure. Default is auto.	Display or hide the default figure toolbar.

Property	Values	Description
		• none — do not display the figure toolbar.
		• auto — display the figure toolbar, but remove it if a user interface control (uicontrol) is added to the figure.
		• figure — display the figure toolbar.
Units	pixels, centimeters, characters, inches, normalized, points, Default is pixels.	Units of measurement used to interpret position vector
Visible	on, off. Default is on.	Determines whether a figure is displayed on the screen.

For a complete list of properties and for more information about the properties listed in the table, see Figure Properties.

The following statement names the figure My GUI, positions the figure on the screen, and makes the GUI invisible so that the user cannot see the components as they are added or initialized. All other properties assume their defaults.

Related Examples

- "Layout a GUI Programmatically"
- · "Add Components to a Programmatic GUI" on page 10-9
- ${}^{\textstyle \bullet}$ "Create Menus for Programmatic GUIs" on page 10-75
- "Create Toolbars for Programmatic GUIs" on page 10-88

Programmatic Components

The following table describes the available components and the function used to create each programmatically.

Note MATLAB software provides a selection of standard dialog boxes that you can create with a single function call. For an example, see the documentation for msgbox, which also provides links to functions that create specialized predefined dialog boxes.

Component	Function	Description
ActiveX	actxcontrol	ActiveX components enable you to display ActiveX controls in your GUI. They are available only on the Microsoft Windows platform.
"Axes" on page 10-37	axes	Axes enable your GUI to display graphics such as graphs and images.
"Button Group" on page 10-33	uibuttongroup	Button groups are like panels, but are used to manage exclusive selection behavior for radio buttons and toggle buttons.
"Check Box" on page 10-11	uicontrol	Check boxes can generate an action when checked and indicate their state as checked or not checked. Check boxes are useful when providing the user with a number of independent choices, for example, displaying a toolbar.
"Edit Text" on page 10-12	uicontrol	Edit text components are fields that enable users to enter or modify text strings. Use an edit text when you want text as input. Users can enter numbers, but you must convert them to their numeric equivalents.
"List Box" on page 10-16	uicontrol	List boxes display a list of items and enable users to select one or more items.
"Panel" on page 10-31	uipanel	Panels arrange GUI components into groups. By visually grouping related controls, panels can make the user interface

Component	Function	Description
		easier to understand. A panel can have a title and various borders.
		Panel children can be user interface controls and axes, as well as button groups and other panels. The position of each component within a panel is interpreted relative to the panel. If you move the panel, its children move with it and maintain their positions on the panel.
"Pop-Up Menu" on page 10-18	uicontrol	Pop-up menus open to display a list of choices when users click the arrow.
"Push Button" on page 10-22	uicontrol	Push buttons generate an action when clicked. For example, an <i>OK</i> button might apply settings and close a dialog box. When you click a push button, it appears depressed; when you release the mouse button, the push button appears raised.
"Radio Button" on page 10-23	uicontrol	Radio buttons are similar to check boxes, but radio buttons are typically mutually exclusive within a group of related radio buttons. That is, when you select one button the previously selected button is deselected. To activate a radio button, click the mouse button on the object. The display indicates the state of the button. Use a button group to manage mutually exclusive radio buttons.
"Slider" on page 10-25	uicontrol	Sliders accept numeric input within a specified range by enabling the user to move a sliding bar, which is called a slider or thumb. Users move the slider by clicking the slider and dragging it, by clicking in the trough, or by clicking an arrow. The location of the slider indicates the relative location within the specified range.

Component	Function	Description
"Static Text" on page 10-26	uicontrol	Static text controls display lines of text. Static text is typically used to label other controls, provide directions to the user, or indicate values associated with a slider. Users cannot change static text interactively.
"Table" on page 10-20	uitable	Tables contain rows of numbers, text strings, and choices grouped by columns. They size themselves automatically to fit the data they contain. Rows and columns can be named or numbered. Callbacks are fired when table cells are selected or edited. Entire tables or selected columns can be made user-editable.
"Toggle Button" on page 10-27	uicontrol	Toggle buttons generate an action and indicate whether they are turned on or off. When you click a toggle button, it appears depressed, showing that it is on. When you release the mouse button, the toggle button remains depressed until you click it a second time. When you do so, the button returns to the raised state, showing that it is off. Use a button group to manage mutually exclusive radio buttons.
Toolbar Buttons	uitoolbar, uitoggletool, uipushtool	Non-modal GUIs can display toolbars, which can contain push buttons and toggle buttons, identified by custom icons and tooltips.

Components are sometimes referred to by the name of the function used to create them. For example, a push button is created using the uicontrol function, and it is sometimes referred to as a uicontrol. A panel is created using the uipanel function and may be referred to as a uipanel.

Add Components to a Programmatic GUI

In this section...

"Add User Interface Controls to a Programmatic GUI" on page 10-9

"Add Panels and Button Groups" on page 10-29

"Add Axes" on page 10-35

"Add ActiveX Controls" on page 10-38

Add User Interface Controls to a Programmatic GUI

Use the uicontrol function to create user interface controls. These include push buttons, toggle buttons, sliders, radio buttons, edit text controls, static text controls, popup menus, check boxes, and list boxes.

Note See "Programmatic Components" on page 10-6 for descriptions of these components. See "Callbacks for Specific Components" for basic examples of programming these components.

A syntax for the uicontrol function is

```
uich = uicontrol(parent, 'PropertyName', PropertyValue,...)
```

where uich is the handle of the resulting user interface control. If you do not specify parent, the component parent is the current figure as specified by the root CurrentFigure property. See the uicontrol reference page for other valid syntaxes.

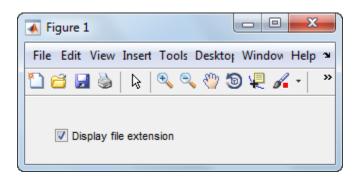
Subsequent topics describe commonly used properties of user interface controls and offer a simple example for each kind of control:

- "Commonly Used Properties" on page 10-10
- "Check Box" on page 10-11
- "Edit Text" on page 10-12
- "List Box" on page 10-16
- "Pop-Up Menu" on page 10-18
- "Table" on page 10-20

- "Push Button" on page 10-22
- "Radio Button" on page 10-23
- "Slider" on page 10-25
- "Static Text" on page 10-26
- "Toggle Button" on page 10-27

Commonly Used Properties

The most commonly used properties needed to describe a user interface control are shown in the following table:

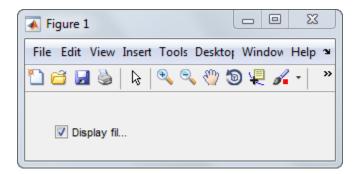

Property	Values	Description
Max	Scalar. Default is 1.	Maximum value. Interpretation depends on the Style property.
Min	Scalar. Default is 0.	Minimum value. Interpretation depends on the Style property.
Position	4-element vector: [distance from left, distance from bottom, width, height]. Default is [20, 20, 60, 20].	Size of the component and its location relative to its parent.
String	String. Can be a cell array or character array or strings.	Component label. For list boxes and pop-up menus it is a list of the items. To display the & character in a label, use two & characters in the string. The words remove, default, and factory (case sensitive) are reserved. To use one of these as a label, prepend a backslash (\) to the string. For example, \remove yields remove.
Style	pushbutton, togglebutton, radiobutton, checkbox, edit, text, slider, listbox, popupmenu. Default is pushbutton.	Type of user interface control object.
TooltipString	String	Text of the tooltip associated with the push tool or toggle tool.

Property	Values	Description
Units	pixels, centimeters, characters, inches, normalized, points, Default is pixels.	Units of measurement used to interpret position vector
Value	Scalar or vector	Value of the component. Interpretation depends on the Style property.

For a complete list of properties and for more information about the properties listed in the table, see Uicontrol Properties.

Check Box

The following statement creates a check box with handle cbh.



The first argument, fh, specifies the handle of the parent figure. You can also specify the parent as a panel or button group. See "Panel" on page 10-31 and "Button Group" on page 10-33 for more information.

The Style property, checkbox, specifies the user interface control as a check box.

The String property labels the check box as **Display file extension**. The check box accommodates only a single line of text. If you specify a component width that is too

small to accommodate the specified String, MATLAB software truncates the string with an ellipsis.

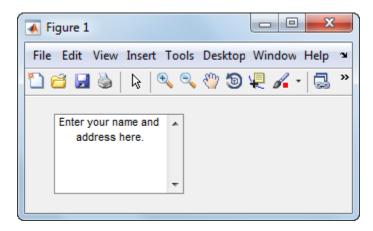
The Value property specifies whether the box is checked. Set Value to the value of the Max property (default is 1) to create the component with the box checked. Set Value to Min (default is 0) to leave the box unchecked. Correspondingly, when the user clicks the check box, MATLAB software sets Value to Max when the user checks the box and to Min when the user unchecks it.

The Position property specifies the location and size of the list box. In this example, the list box is 130 pixels wide and 20 high. It is positioned 30 pixels from the left of the figure and 20 pixels from the bottom. The statement assumes the default value of the Units property, which is pixels.

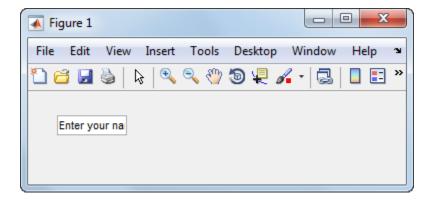
Note: You can also use an image as a label. See "Add an Image to a Push Button" on page 10-23 for more information.

Edit Text

The following statement creates an edit text component with handle eth:



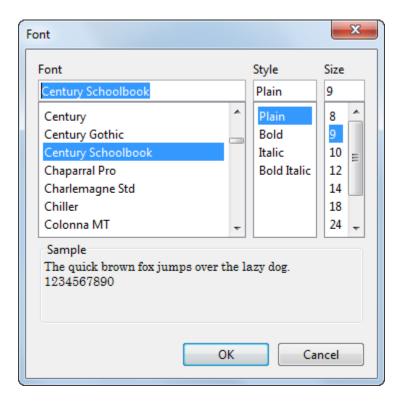
The first argument, fh, specifies the handle of the parent figure. You can also specify the parent as a panel or button group. See "Panel" on page 10-31 and "Button Group" on page 10-33 for more information.


The Style property, edit, specifies the user interface control as an edit text component.

The String property defines the text that appears in the component.

To enable multiple-line input, Max - Min must be greater than 1, as in the following statement. MATLAB software wraps the string if necessary.

If Max-Min is less than or equal to 1, the edit text component admits only a single line of input. If you specify a component width that is too small to accommodate the specified string, MATLAB displays only part of the string. The user can use the arrow keys to move the cursor over the entire string.


The Position property specifies the location and size of the edit text component. In this example, the edit text is 130 pixels wide and 20 high. It is positioned 30 pixels from the left of the figure and 50 pixels from the bottom. The statement assumes the default value of the Units property, which is pixels.

Setting Font Characteristics

You specify the text font to display in the edit box with the FontName property. On Microsoft Windows platforms, the default is MS Sans Serif; on Macintosh and UNIX platforms, the default is Helvetica. You can use any system font except Symbol and Marlett.

You can chose a text font for the edit box and set all font characteristics at once with output from the uisetfont GUI, which lists and previews available fonts. When you select one of them and click OK, its name and other characteristics are returned in a MATLAB structure, which you can use to set the font characteristic for the edit box. For example, to use the Century Schoolbook font with a normal style and 9 point size, do the following:

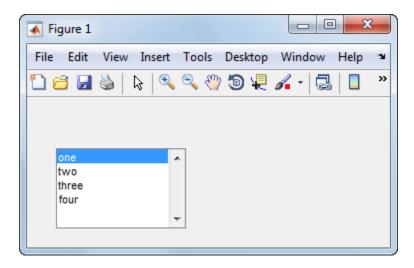
font = uisetfont


```
font =
    FontName: 'Century Schoolbook'
FontWeight: 'normal'
FontAngle: 'normal'
FontSize: 9
FontUnits: 'points'
```

Note: Not all fonts listed may be available to users of your GUI on their systems.

You can then insert as much of the struct's data as you need into a statement in your code file. For example:

```
eth.FontName = 'Century Schoolbook';
eth.FontSize = 9;
```


Instead of designating a font yourself, you could provide a push button or context menu in your GUI that allows users to select fonts themselves via the uisetfont GUI. The callback for the feature could be

```
font = uisetfont;
set(eth, font)
```

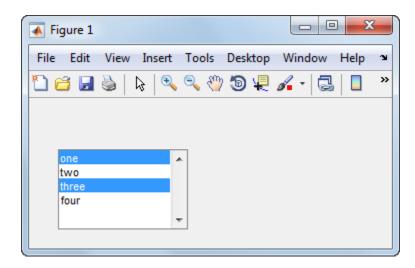
where eth is the handle for the edit box whose font the user is setting. You can store the handle in the figure's application data and retrieve it with getappdata.

List Box

The following statement creates a list box with handle 1bh:

The first argument, fh, specifies the handle of the parent figure. You can also specify the parent as a panel or button group. See "Panel" on page 10-31 and "Button Group" on page 10-33 for more information.

The Style property, listbox, specifies the user interface control as a list box.


The String property defines the list items. You can specify the items in any of the formats shown in the following table.

String Property Format	Example
Cell array of strings	{'one' 'two' 'three'}
Padded string matrix	['one ';'two ';'three']
String vector separated by vertical slash () characters	['one two three']

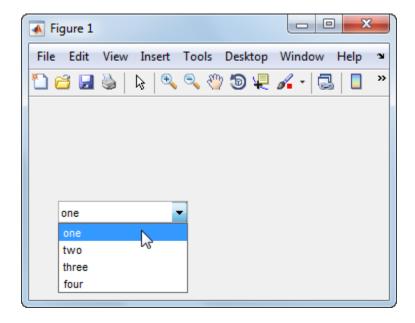
If you specify a component width that is too small to accommodate one or more of the specified strings, MATLAB software truncates those strings with an ellipsis.

The Value property specifies the item or items that are selected when the component is created. To select a single item, set Value to a scalar that indicates the index of the selected list item, where 1 corresponds to the first item in the list.

To select more than one item, set Value to a vector of indices of the selected items. To enable selection of more than one item, Max - Min must be greater than 1, as in the following statement:

If you want no initial selection:

- 1 Set the Max and Min properties to enable multiple selection
- **2** Set the Value property to an empty matrix [].


If the list box is not large enough to display all list entries, you can set the ListBoxTop property to the index of the item you want to appear at the top when the component is created.

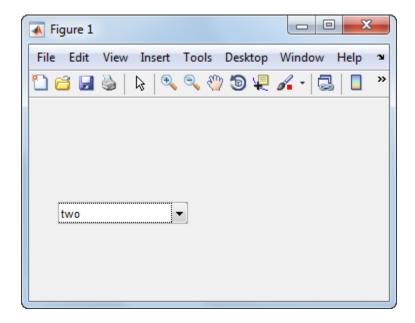
The Position property specifies the location and size of the list box. In this example, the list box is 130 pixels wide and 80 high. It is positioned 30 pixels from the left of the figure and 20 pixels from the bottom. The statement assumes the default value of the Units property, which is pixels.

The list box does not provide for a label. Use a static text component to label the list box.

Pop-Up Menu

The following statement creates a pop-up menu (also known as a drop-down menu or combo box) with handle pmh:

The first argument, fh, specifies the handle of the parent figure. You can also specify the parent as a panel or button group. See "Panel" on page 10-31 and "Button Group" on page 10-33 for more information.

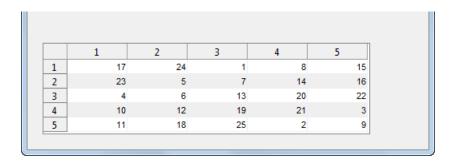

The Style property, popupmenu, specifies the user interface control as a pop-up menu.

The String property defines the menu items. You can specify the items in any of the formats shown in the following table.

String Property Format	Example
Cell array of strings	{'one' 'two' 'three'}
Padded string matrix	['one ';'two ';'three']
String vector separated by vertical slash () characters	['one two three']

If you specify a component width that is too small to accommodate one or more of the specified strings, MATLAB software truncates those strings with an ellipsis.

The Value property specifies the index of the item that is selected when the component is created. Set Value to a scalar that indicates the index of the selected menu item, where 1 corresponds to the first item in the list. In the statement, if Value is 2, the menu looks like this when it is created:


The Position property specifies the location and size of the pop-up menu. In this example, the pop-up menu is 130 pixels wide. It is positioned 30 pixels from the left of the figure and 80 pixels from the bottom. The height of a pop-up menu is determined by the font size; the height you set in the position vector is ignored. The statement assumes the default value of the Units property, which is pixels.

The pop up menu does not provide for a label. Use a static text component to label the pop-up menu.

Table

The following code creates a table with handle th. It populates it with the matrix magic(5), and then adjusts its size by setting the width and height of its Position property to that of its Extent property:

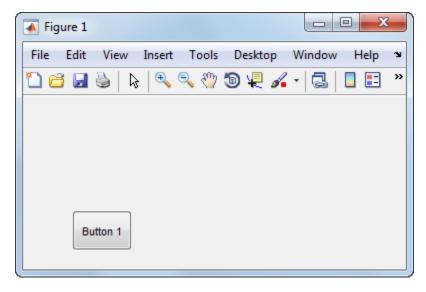
```
fh = figure;
th = uitable(fh, 'Data', magic(5));
texn = th.Extent;
th.Position(3) = th.Extent(3);
th.Position(4) = th.Extent(4);
```


By default, the size of a uitable is 300-by-300 pixels, and pixels is the default Units for uitable Position and Extent. The table's Extent is calculated to include its scrollbars, which obscure the last row and column of data when setting the table's Position as above.

Table cells can be edited by users if the ColumnEditable property enables it. The CellEditCallback fires whenever a table cell is edited. By default, cells are not editable.

A uitable has no Style property, but you can change its appearance in several ways by setting

- Foreground and background colors.
- · Row striping.
- Row labels/numbers.
- Column labels/numbers.
- Column formats and widths.
- Font characteristics.


Also, uitables have six callback functions that you can program.

You can set most uitable properties using the Table Property Editor that you open from the Property Inspector instead of using the set command. This GUI lets you set properties for table rows, columns, colors, and data.

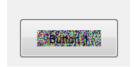
See uitable and Uitable Properties for complete documentation. For an example of a GUI containing a uitable, see "Synchronized Data Presentations in a Programmatic GUI" on page 14-12.

Push Button

The following statement creates a push button with handle pbh:

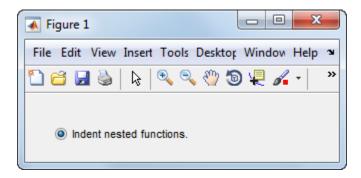
The first argument, fh, specifies the handle of the parent figure. You can also specify the parent as a panel or button group. See "Panel" on page 10-31 and "Button Group" on page 10-33 for more information.

The Style property, pushbutton, specifies the user interface control as a push button. Because pushbutton is the default style, you can omit the 'Style' property from the statement.


The String property labels the push button as **Button 1**. The push button allows only a single line of text. If you specify more than one line, only the first line is shown. If you specify a component width that is too small to accommodate the specified **String**, MATLAB software truncates the string with an ellipsis.

The Position property specifies the location and size of the push button. In this example, the push button is 60 pixels wide and 40 high. It is positioned 50 pixels from the left of the figure and 20 pixels from the bottom. This statement assumes the default value of the Units property, which is pixels.

Add an Image to a Push Button


To add an image to a push button, assign the button's CData property an m-by-n-by-3 array of RGB values that defines a "truecolor image". For example, the array img defines 16-by-64 truecolor image using random values between 0 and 1 (generated by rand).

Note See ind2rgb for information on converting a matrix X and corresponding colormap, i.e., an (X, MAP) image, to RGB (truecolor) format.

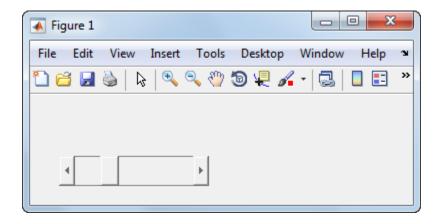
Radio Button

The following statement creates a radio button with handle rbh:

The first argument, fh, specifies the handle of the parent figure. You can also specify the parent as a panel or button group. Use a button group to manage exclusive selection of radio buttons and toggle buttons. See "Panel" on page 10-31 and "Button Group" on page 10-33 for more information.

The Style property, radiobutton, specifies the user interface control as a radio button.

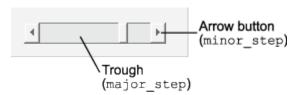
The String property labels the radio button as **Indent nested functions**. The radio button allows only a single line of text. If you specify more than one line, only the first line is shown. If you specify a component width that is too small to accommodate the specified **String**, MATLAB software truncates the string with an ellipsis.


The Value property specifies whether the radio button is selected when the component is created. Set Value to the value of the Max property (default is 1) to create the component with the radio button selected. Set Value to Min (default is 0) to leave the radio button unselected.

The Position property specifies the location and size of the radio button. In this example, the radio button is 150 pixels wide and 20 high. It is positioned 30 pixels from the left of the figure and 20 pixels from the bottom. The statement assumes the default value of the Units property, which is pixels.

Note: You can also use an image as a label. See "Add an Image to a Push Button" on page 10-23 for more information.

Slider


The following statement creates a slider with handle sh:

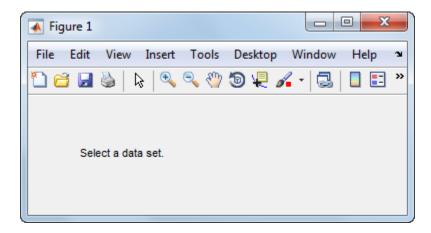
- The first argument, fh, specifies the handle of the parent figure. You can also specify the parent as a panel or button group. See "Panel" on page 10-31 and "Button Group" on page 10-33 for more information.
- The Style property, slider, specifies the user interface control as a slider.
- Specify the range of the slider by setting its Min property to the minimum value of the slider and its Max property to the maximum value. The Min property must be less than Max.
- Specify the value indicated by the slider when it is created by setting the Value property to the appropriate number. This number must be less than or equal to Max and greater than or equal to Min. If you specify Value outside the specified range, the slider is not displayed.
- The slider Value changes by a small amount when a user clicks the arrow button, and changes by a larger amount when the user clicks the trough (also called the channel). Control how the slider responds to these actions by setting the SliderStep property. Specify SliderStep as a two-element vector, [minor_step major_step], where minor_step is less than or equal to major_step. Because

specifying very small values can cause unpredictable slider behavior, make both minor_step and major_step greater than 1e-6. Set major_step to the proportion of the range that clicking the trough moves the slider thumb. Setting it to 1 or higher causes the thumb to move to Max or Min when the trough is clicked.

As major_step increases, the thumb grows longer. When major_step is 1, the thumb is half as long as the trough. When major_step is greater than 1, the thumb continues to grow, slowly approaching the full length of the trough. When a slider serves as a scroll bar, you can uses this behavior to indicate how much of the document is currently visible by changing the value of major step.

 If you want to set the location or size of the component to an exact value, then modify its Position property.

The example provides a 5 percent minor step and a 20 percent major step. The default major_step and minor_step, [0.01 0.10], provides a 1 percent minor step and a 10 percent major step.


The Position property specifies the location and size of the slider. In this example, the slider is 150 pixels wide and 30 high. It is positioned 30 pixels from the left of the figure and 20 pixels from the bottom. The statement assumes the default value of the Units property, which is pixels.

Note: On Mac platforms, the height of a horizontal slider is constrained. If the height you set in the position vector exceeds this constraint, the displayed height of the slider is the maximum allowed. The height element of the position vector is not changed.

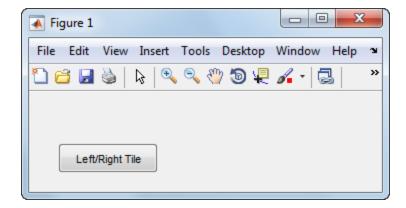
The slider component provides no text description or data entry capability. Use a "Static Text" on page 6-34 component to label the slider. Use an "Edit Text" on page 6-32 component to enable a user to input a value to apply to the slider.

Static Text

The following statement creates a static text component with handle sth:

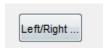
The first argument, fh, specifies the handle of the parent figure. You can also specify the parent as a panel or button group. See "Panel" on page 10-31 and "Button Group" on page 10-33 for more information.

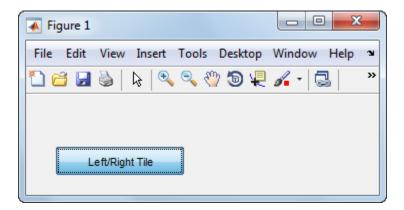
The Style property, text, specifies the user interface control as a static text component.


The String property defines the text that appears in the component. If you specify a component width that is too small to accommodate the specified String, MATLAB software wraps the string.

The Position property specifies the location and size of the static text component. In this example, the static text is 130 pixels wide and 20 high. It is positioned 30 pixels from the left of the figure and 50 pixels from the bottom. The statement assumes the default value of the Units property, which is pixels.

Toggle Button


The following statement creates a toggle button with handle tbh:


The first argument, fh, specifies the handle of the parent figure. You can also specify the parent as a panel or button group. Use a button group to manage exclusive selection of radio buttons and toggle buttons. See "Panel" on page 10-31 and "Button Group" on page 10-33 for more information.

The Style property, togglebutton, specifies the user interface control as a toggle button.

The String property labels the toggle button as **Left/Right Tile**. The toggle button allows only a single line of text. If you specify more than one line, only the first line is shown. If you specify a component width that is too small to accommodate the specified **String**, MATLAB software truncates the string with an ellipsis.

The Value property specifies whether the toggle button is selected when the component is created. Set Value to the value of the Max property (default is 1) to create the component with the toggle button selected (depressed). Set Value to Min (default is 0) to leave the toggle button unselected (raised). The following figure shows the toggle button in the depressed position.

The Position property specifies the location and size of the toggle button. In this example, the toggle button is 100 pixels wide and 30 high. It is positioned 30 pixels from the left of the figure and 20 pixels from the bottom. The statement assumes the default value of the Units property, which is pixels.

Note: You can also use an image as a label. See "Add an Image to a Push Button" on page 10-23 for more information.

Add Panels and Button Groups

Panels and button groups are containers that arrange GUI components into groups. If you move the panel or button group, its children move with it and maintain their positions relative to the panel or button group.

Note See "Programmatic Components" on page 10-6 for descriptions of these components.

Use the uipanel and uibuttongroup functions to create these components.

A syntax for panels is

```
ph = uipanel(fh, 'PropertyName', PropertyValue,...)
```

where ph is the handle of the resulting panel. The first argument, fh, specifies the handle of the parent figure. You can also specify the parent as a panel or button group. See the uipanel reference page for other valid syntaxes.

A syntax for button groups is

```
bgh = uibuttongroup('PropertyName',PropertyValue,...)
```

where bgh is the handle of the resulting button group. For button groups, you must use the Parent property to specify the component parent. See the uibuttongroup reference page for other valid syntaxes.

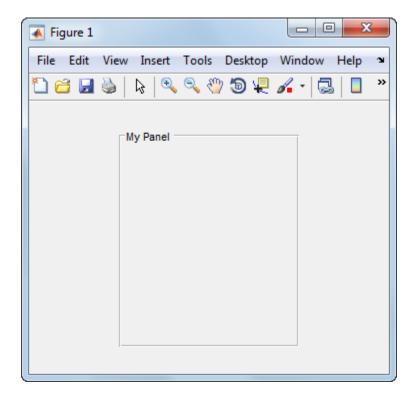
For both panels and button groups, if you do not specify a parent, the component parent is the current figure as specified by the root CurrentFigure property.

Subsequent topics describe commonly used properties of panels and button groups and offer a simple example for each component.

- "Commonly Used Properties" on page 10-30
- "Panel" on page 10-31
- "Button Group" on page 10-33

Commonly Used Properties

The most commonly used properties needed to describe a panel or button group are shown in the following table:


Property	Values	Description
Parent	Handle	Handle of the component's parent figure, panel, or button group.
Position	4-element vector: [distance from left, distance from bottom, width, height]. Default is [0, 0, 1, 1].	Size of the component and its location relative to its parent.
Title	String	Component label. To display the & character in a label, use two & characters in the string. The words remove, default, and factory (case sensitive) are reserved. To use one of these as a label, prepend a backslash (\) to the string. For example, \remove yields remove.

Property	Values	Description
TitlePosition	lefttop, centertop, righttop, leftbottom, centerbottom, rightbottom. Default is lefttop.	Location of title string in relation to the panel or button group.
Units	normalized, centimeters, characters, inches, pixels, points. Default is normalized.	Units of measurement used to interpret position vector

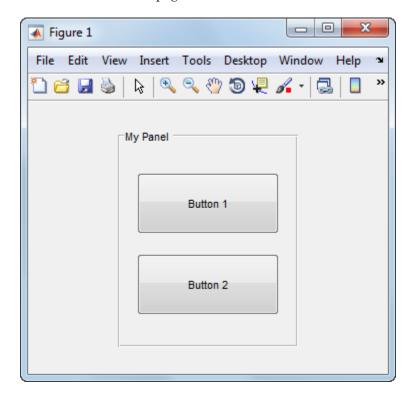
For a complete list of properties and for more information about the properties listed in the table, see Uipanel Properties and Uibuttongroup Properties. Properties needed to control GUI behavior are discussed in "Write Callbacks Using the Programmatic Workflow" on page 11-5.

Panel

The following statement creates a panel with handle ph. Use a panel to group components in the GUI.

The Parent property specifies the handle fh of the parent figure. You can also specify the parent as a panel or button group.

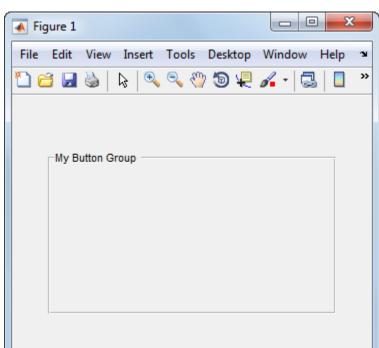
The Title property labels the panel as My Panel.


The statement assumes the default TitlePosition property, which is lefttop.

The Units property is used to interpret the Position property. This panel assumes the default Units property, normalized. This enables the panel to resize automatically if the figure is resized. See "Managing the Layout in Resizable GUIs" on page 10-45 for more information about resizing.

The Position property specifies the location and size of the panel. In this example, the panel is 50 percent of the width of the figure and 80 percent of its height. It is positioned 25 percent of the figure width from the left of the figure and 10 percent of the figure height from the bottom. As the figure is resized the panel retains these proportions.

The following statements add two push buttons to the panel with handle ph. The Position property of each component within a panel is interpreted relative to the panel.


See "Push Button" on page 10-22 for more information about adding push buttons.

Button Group

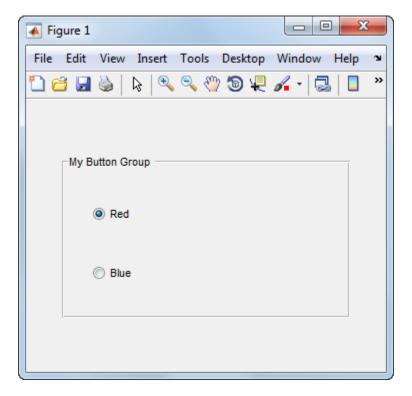
The following statement creates a button group with handle bgh. Use a button group to exclusively manage radio buttons and toggle buttons.

```
bgh = uibuttongroup('Parent',fh,'Title','My Button Group',...
```


'Position',[.1 .2 .8 .6]);

The Parent property specifies the handle fh of the parent figure. You can also specify the parent as a panel or button group.

The Title property labels the button group as My Button Group.


The statement assumes the default TitlePosition property, which is lefttop.

The Units property is used to interpret the Position property. This button group assumes the default Units property, normalized. This enables the button group to resize automatically when the figure is resized.

The Position property specifies the location and size of the button group. In this example, the button group is 80 percent of the width of the figure and 60 percent of its height. It is positioned 10 percent of the figure width from the left of the figure and 20 percent of the figure height from the bottom. As the figure is resized the button group retains these proportions.

The following statements add two radio buttons to the button group with handle bgh.

By default, the software automatically selects the first radio button added to a button group. You can use the radio button Value property to explicitly specify the initial selection. See "Radio Button" on page 10-23 for information.

Add Axes

Axes enable your GUI to display graphics such as graphs and images using commands such as: plot, surf, line, bar, polar, pie, contour, and mesh.

Note See "Programmatic Components" on page 10-6 for a description of this component.

Use the axes function to create an axes. A syntax for this function is

```
ah = axes('PropertyName',PropertyValue,...)
```

where ah is the handle of the resulting axes. You must use the Parent property to specify the axes parent. If you do not specify Parent, the parent is the current figure as specified by the root CurrentFigure property. See the axes reference page for other valid syntaxes.

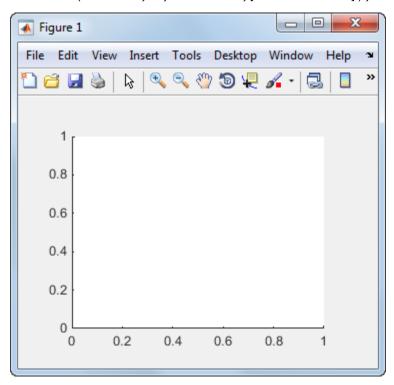
Subsequent topics describe commonly used properties of axes and offer a simple example.

- · "Commonly Used Properties" on page 10-36
- "Axes" on page 10-37

Commonly Used Properties

The most commonly used properties needed to describe an axes are shown in the following table:

Property	Values	Description
HandleVisibility	on, callback, off. Default is on.	Determines if an object's handle is visible in its parent's list of children. For axes, set HandleVisibility to callback to protect them from command line operations.
NextPlot	add, replace, replacechildren. Default is replace	Specifies whether plotting adds graphics, replaces graphics and resets axes properties to default, or replaces graphics only.
Parent	Handle	Handle of the component's parent figure, panel, or button group.
Position	4-element vector: [distance from left, distance from bottom, width, height].	Size of the component and its location relative to its parent.
Units	normalized, centimeters, characters, inches,	Units of measurement used to interpret position vector


Property	Values	Description
	pixels, points. Default is	
	normalized.	

For a complete list of properties and for more information about the properties listed in the table, see Axes Properties.

See commands such as the following for more information on axes objects: plot, surf, line, bar, polar, pie, contour, imagesc, and mesh.

Axes

The following statement creates an axes with handle ah:

The Parent property specifies the handle fh of the parent figure. You can also specify the parent as a panel or button group.

The Units property interprets the Position property. This axes assumes the default Units property, normalized. This enables the axes to resize automatically if the figure is resized. For more information about resizing, see "Managing the Layout in Resizable GUIs" on page 10-45.

The Position property specifies the location and size of the axes. In this example, the axes is 70 percent of the width of the figure and 70 percent of its height. It is positioned 15 percent of the figure width from the left of the figure and 15 percent of the figure height from the bottom. As the figure is resized the axes retains these proportions.

The software automatically adds the tick marks. Most functions that draw in the axes update the tick marks appropriately.

Prevent Customized Axes Properties from Being Reset

Data graphing functions, such as plot, image, scatter, and many others by default reset axes properties before they draw into an axes. This can be a problem in a GUI where you might need to maintain consistency of axes limits, ticks, axis colors, and font characteristics from one plot to another.

The default value of the NextPlot axes property, 'replace' causes this behavior, and can further interfere with a GUI that generates plots by removing all callbacks from the axes whenever a graph is plotted or replotted. For a GUI, the appropriate value is often 'replacechildren'. Consequently, in callbacks that generate graphics, you might need to include this command prior to changing the contents of an axes:

```
ah.NextPlot = 'replacechildren';
```

Executing this command prevents MATLAB from resetting the existing property values of an axes that the GUI might require, such as its colors, fonts, context menu or the ButtonDownFcn callback.

To see this in the context of a full example, set the NextPlot property of axes1 and axes2 to ReplaceChildrenin the "Synchronized Data Presentations in a GUIDE GUI" on page 9-30 example.

Add ActiveX Controls

ActiveX components enable you to display ActiveX controls in your GUI. They are available only on the Microsoft Windows platform.

An ActiveX control can be the child only of a figure; i.e., of the GUI itself. It cannot be the child of a panel or button group.

See "Creating an ActiveX Control" about adding an ActiveX control to a figure. See "Creating COM Objects" for general information about ActiveX controls.

Layout a GUI Programmatically

You can adjust the size and location of components, and manage front-to-back order of grouped components by setting certain property values. This topic explains how to use these properties to get the layout you want. It also explains how to use the SizeChangedFcn callback to control the GUI's resizing behavior.

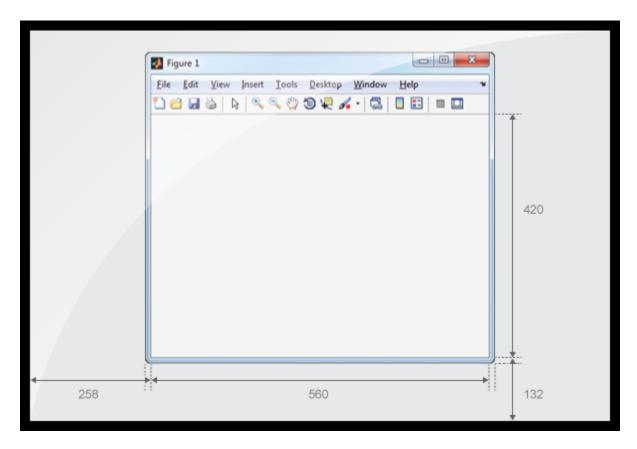
In this section...

"Component Placement and Sizing" on page 10-40

"Managing the Layout in Resizable GUIs" on page 10-45

"Manage the Stacking Order of Grouped Components" on page 10-48

Component Placement and Sizing

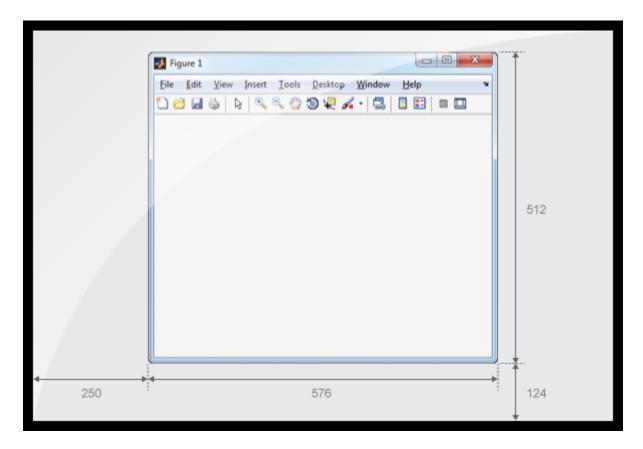

A GUI layout consists of a figure and one or more components that you place inside the figure. Accurate placement and sizing of each component involves setting certain properties and understanding how the inner and outer boundaries of the figure relate to each other.

Location and Size of Outer Bounds and Drawable Area

The area inside the figure, which contains the UI components, is called the *drawable area*. The drawable area is inside the outer bounds of the figure, but does not include the menu bar or tool bar. You can control the location and size of the drawable area by setting the figure's Position property as a four-element row vector. The first two elements of this vector specify the location. The last two elements specify the size. By default, the figure's Position values are in pixels.

This command creates a figure and sets the Position value. The left edge of the drawable area is 258 pixels from the left side of the screen. Its bottom edge is 132 pixels up from the bottom of the screen. Its size is 560 pixels wide by 420 pixels high:

```
f = figure('Position',[258 132 560 420]);
```



You can query or change the outer bounds of the figure by using the OuterPosition property. Like the Position property, the OuterPosition is a four element row vector:

f.OuterPosition

The left outer edge of this figure is 250 pixels from the left side of the screen. Its bottom outer edge is 124 pixels up from the bottom of the screen. The area enclosed by the outer bounds of the figure is 576 pixels wide by 512 pixels high.

f.Position

Explicitly changing the Position or OuterPosition causes the other property to change. For example, this is the current Position value of f:

```
ans =

258 132 560 420

Changing the OuterPosition causes the Position to change:

f.OuterPosition = [250 250 490 340];
f.Position

ans =
```

```
258 258 474 248
```

Other UI components, such as uicontrols, uitables, and uipanels have a Position property, which you can use to set their location and size.

Units of Measure

The default units associated with the Position property depend on the component you are placing. However, you can change the Units property to lay out your GUI in the units of your choice. There are six different units of measure to choose from: inches, centimeters, normalized, points, pixels, and characters.

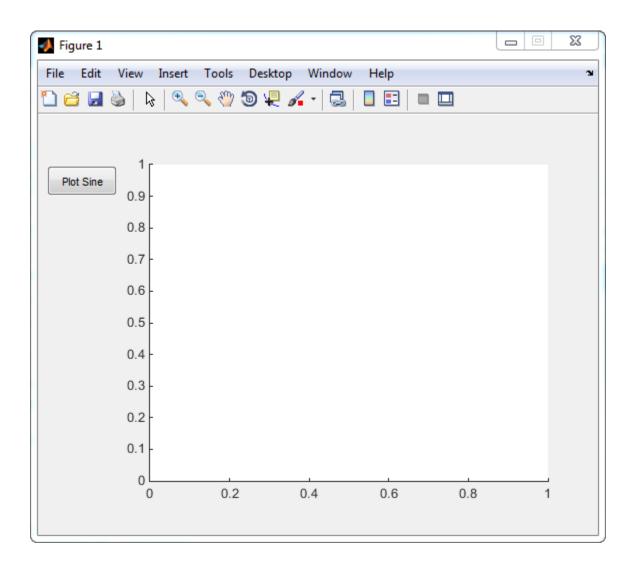
Always specify Units before Position for the most predictable results.

```
f = figure('Units', 'inches', 'Position', [4 3 6 5]);
```

Your choice of units can affect the appearance and resizing behavior of the GUI:

- If you want the components inside the figure to scale proportionally with the figure when the user resizes the window, set the Units property of the components inside the figure to 'normalized'.
- If you are developing a cross-platform GUI, then you can set the Units property to 'points' or 'characters' to make the layout consistent across all platforms.
- There might be other situations in which you want to lay out your GUI using nondefault units. For example, you might need to specify height and width values in inches in order to conform to a specification.
- When the value of the Units property is 'inches', 'centimeters', 'points', 'pixels', or 'characters', the component does not scale with the figure when the user resizes the GUI. To enable automatic scaling, set the Units property to 'normalized' after the code that specifies the Position in the other units.

Example of a Simple Layout


Here is the code for a simple GUI containing an axes and a button. To see how it works, copy and paste this code into the editor and run it.

```
function mygui
% Add the GUI components
hs = addcomponents;
```

```
% Make figure visible after adding components
   hs.fig.Visible = 'on';
   function hs = addcomponents
       % add components, save handles in a struct
       hs.fig = figure('Visible','off',...
                   'Resize','off',...
                   'Tag','fig');
       hs.btn = uicontrol(hs.fig, 'Position',[10 340 70 30],...
                   'String', 'Plot Sine',...
                   'Tag', 'button',...
                   'Callback', @plotsine);
       hs.ax = axes('Parent',hs.fig,...
                  'Position',[0.20 0.13 0.71 0.75],...
                  'Tag', 'ax');
   end
   function plotsine(hObject,callbackdata)
       theta = 0:pi/64:6*pi;
       y = sin(theta);
       plot(hs.ax,theta,y);
   end
end
```

This code performs the following tasks:

- The main function, mygui, calls the addcomponents function. The addcomponents function returns a structure, hs, containing the handles to all the GUI components.
- The addcomponents function creates a figure, an axes, and a button, each with specific Position values.
 - Notice that the Resize property of the figure is 'Off'. This value disables the resizing capability of the figure.
 - Notice that the Visible property of the figure is 'off' inside the addcomponents function. The value changes to 'on' after addcomponents returns to the calling function. Doing this delays the figure display until after MATLAB adds all the components. Thus, the resulting GUI has a clean appearance when it starts up.
- The plotsine function plots the sine function inside the axes when the user clicks the button.

Managing the Layout in Resizable GUIs

To create a resizable GUI and manage the layout when the user resizes the window, set the figure's SizeChangedFcn property to be a handle to a callback function. Code the callback function to manage the layout when the window size changes.

If your GUI has another container, such as a uipanel or uibuttongroup, you can manage the layout of the container's child components in a separate callback function that you assign to the SizeChangedFcn property.

The SizeChangedFcn callback executes only under these circumstances:

- The container becomes visible for the first time.
- The container is visible while its drawable area changes.
- The container becomes visible for the first time after its drawable area changes. This
 situation occurs when the drawable area changes while the container is invisible and
 becomes visible later.

Note: Typically, the drawable area changes at the same time the outer bounds change. However, adding or removing menu bars or tool bars to a figure causes the outer bounds to change while the drawable area remains constant. Therefore, the SizeChangedFcn callback does not execute when you add or remove menu bars or tool bars.

This GUI is a resizable version of the simple GUI defined in "Example of a Simple Layout" on page 10-43. This code includes a figure SizeChangedFcn callback called resizegui. The resizegui function calculates new Position values for the button and axes when the user resizes the window. The button appears to be stationary when the user resizes the window. The axes scales with the figure.

```
'Units','pixels',...
                  'Tag', 'ax');
   end
   function plotsine(hObject,callbackdata)
       theta = 0:pi/64:6*pi;
       y = sin(theta);
       plot(hs.ax,theta,y);
   end
   function resizegui(hObject,callbackdata)
       % Get figure width and height
       figwidth = hs.fig.Position(3);
       figheight = hs.fig.Position(4);
       % Set button position
       bheight = 30;
       bwidth = 70;
       bbottomedge = figheight - bheight - 50;
       bleftedge = 10;
       hs.btn.Position = [bleftedge bbottomedge bwidth bheight];
       % Set axes position
       axheight = .75*figheight;
       axbottomedge = max(0,figheight - axheight - 30);
       axleftedge = bleftedge + bwidth + 30;
       axwidth = max(0,figwidth - axleftedge - 50);
       hs.ax.Position = [axleftedge axbottomedge axwidth axheight];
   end
end
```

The resizegui function sets the location and size of the button and axes whenever the user resizes the window:

- The button height, width, and left edge stay the same when the window resizes.
- The bottom edge of the button, **bbottomedge**, allows 50 pixels of space between the top of the figure and the top of the button.
- The value of the axes height, axheight, is 75% of the available height in the figure.
- The value of the axes bottom edge, axbottomedge, allows 30 pixels of space between the top of the figure and the top of the axes. In this calculation, the max function limits this value to nonnegative values.

The value of the axes width, axwidth, allows 50 pixels of space between the right side
of the axes and the right edge of the figure. In this calculation, the max function limits
this value to nonnegative values.

Notice that *all* the layout code is inside the resizegui function. It is a good practice to put all the layout code inside the SizeChangedFcn callback to ensure the most accurate results.

Also, it is important to delay the display of the entire GUI window until after all the variables that a SizeChangedFcn callback uses are defined. Doing so can prevent the SizeChangedFcn callback from returning an error. To delay the display of the window, set the Visible property of the figure to 'off'. After you define all the variables that your SizeChangedFcn callback uses, set the Visible property to 'on'.

Manage the Stacking Order of Grouped Components

If your GUI has components grouped inside of uipanels, uibuttongroups or uitabs, then you might need to manage their front-to-back order, or stacking order, to make the GUI look the way you want. The default stacking order of components is as follows:

- · Axes and other Graphics objects appear at the bottom.
- Other UI components appear in the order in which you create them. They can stack in any order.

Use the Parent property to control the front-to-back order (stacking order) of grouped components. To move a component on top of another component, set its Parent property to the object you want to appear beneath it.

The Children property of a uipanel, uibuttongroup, or uitab lists the child objects inside the container according to their stacking order.

Adjust Programmatic GUI Layouts Interactively

In this section...

"Set Positions of Components Interactively" on page 10-50

"Align Components" on page 10-60

"Set Colors Interactively" on page 10-67

"Set Font Characteristics Interactively" on page 10-68

Laying out a programmatic GUI can take time and involves many small steps. For example, you must position components manually—often several times—to place them exactly where you want them to be. Establishing final settings for other properties and coding statements for them also takes time. You can reduce the effort involved by taking advantage of built-in MATLAB tools and GUIs to establish values for component properties. The following sections describe some of the tools.

Mode or Tool	Use it to	Commands
Plot edit mode	Interactively edit and annotate plots	plotedit
Property Editor	Edit graphical properties of objects	propedit, propertyeditor
Property Inspector	Interactively display and edit most object properties	inspect
Align Distribute Tool	Align and distribute components with respect to one another	align
Color Selector	Choose a color from a palette of colors and obtain its value	uisetcolor
Font Selector	Preview character font, style, and size and choose values for them	uisetfont

Some of these tools return property values, while others let you edit properties interactively without returning their values. In particular, the Property Inspector lets you interactively set almost any object property. You then can copy property values and paste them into the Command Window or a code file. However, when you capture vector-valued properties, such as Color or Position, the Inspector only lets you copy values one number at a time.

Note: The following sections describe some techniques for interactively refining the appearance of GUIs. If you are building a GUI that opens a saved FIG-file, re-saving that file will preserve most of the properties you interactively change. If your program file creates a new figure to contain your GUI whenever you open it (most programmatic GUIs work this way), you need to specify all changed properties in the program file itself to keep the GUI up-to-date.

Set Positions of Components Interactively

If you do not like the initial positions or other properties of GUI components, you can make manual adjustments to them. By placing the GUI figure in plot edit mode, you can use your mouse to move, resize, align, and change various components properties. Then, you can read out the values of properties you changed and copy them into your GUI code file to initialize the components.

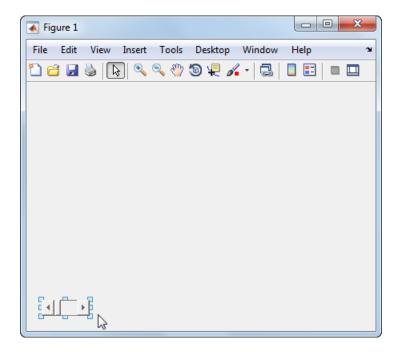
To set position in plot edit mode:

- Enter plot edit mode. Click the Arrow tool , or select **Edit Plot** from the **Tools** menu. If your figure has no menus or toolbar, type plotedit on in the Command Window.
- **2** Select a component. Click the left mouse button while over the component you are editing.
- Move and resize the component. Click within it and drag to move it to a new location. Click a square black handle and drag to change its shape. Use arrow keys to make small adjustments.
- **4** Make sure that you know the handle of the component you have manipulated. In the following code, the handle is a variable named <code>object_handle</code>.
- **5** Get the component's Position value from the Property Inspector. Execute this command to open the Property Inspector.

inspect

Or, use dot notation to get the value at the command prompt.

```
object_handle.Position
ans =
15.2500 333.0000 106.0000 20.0000
```


6 Assign the Postion property to that value (ans).

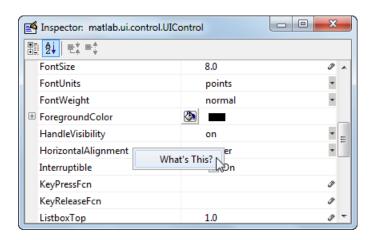
```
object_handle.Position = [15.2500 333.0000 106.0000 20.0000];
```

Tip Instead of using a separate set command, after you decide upon a position for the object, you can modify the statement in your code file that creates the object to include the Position parameter and value.

To position components systematically, you can create a function to manage the process. Here is a simple example function called editpos:

```
function rect = editpos(handle)
% Enters plot edit mode, pauses to let user manipulate objects,
% then turns the mode off. It does not track what user does.
% User later needs to output a Position property, if changed.
if ~ishghandle(handle)
    disp(['=E= gbt moveobj: Invalid handle: ' inputname(1)])
end
plotedit(handle, 'on')
disp('=== Select, move and resize object. Use mouse and arrow keys.')
disp('=== When you are finished, press Return to continue.')
rect = handle.Position;
inspect(handle)
To experiment with the function, enter the following code in the Command Window:
hfig = figure;
hsl = uicontrol('Style','slider')
editpos(hsl)
After you call editpos, the following prompt appears:
=== Select, move and resize the object. Use mouse and arrow keys.
=== When you are finished, press Return to continue.
When you first enter plot edit mode, the selection is figure itself. Click the slider to select
it and reposition it. For example, move it to the right side of the figure and orient it
vertically, as shown in the following figure.
```

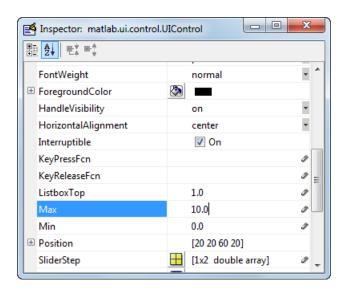

Use Plot Edit Mode to Change Properties


After you select an object in plot edit mode, you can open the Property Inspector to view and modify any of its properties. While the object is selected, in the Command Window type:


inspect

You also can use the functional form to pass in the handle of the object you want to inspect, for example:

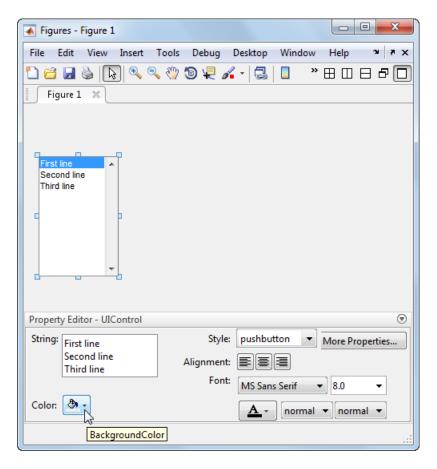
inspect(hsl)


The Property Inspector opens, displaying the object properties. You can edit as well as read property values, and the component updates immediately. To see a definition of any property, right-click the name or value in the Property Inspector and click the **What's This?** menu item that appears. A context-sensitive help window opens displaying the definition of the property.

Scroll in the help window to view descriptions of other properties.

The following Inspector image illustrates using the Inspector to change the Max property of a slider uicontrol from its default value (1.0) to 10.0.

Edit with the Property Editor


The Property Editor has a more graphical interface than the Property Inspector. The interface is convenient for setting properties that affect the appearance of components. To open it for a component, in the Command Window type:

propedit(object handle)

Alternatively, omit the argument and type:

plotedit on

The figure enters plot edit mode. Select the object you want to edit and change any property that the Property Editor displays. The following figure shows the BackgroundColor and String properties of a list box altered using the Property Editor.

Most of the properties that the Property Editor can set are cosmetic. To modify values for other properties, click **More Properties**. The Property Inspector opens (or, if already open, receives focus) to display properties of the selected object. Use it to change properties that the Property Editor does not display.

When you finish setting a property, you need to save its value:

- If your GUI program file opens a saved FIG-file each time it runs, save (or re-save) the figure itself.
- If your GUI program file creates the figure each time it runs, save the property value in your program file.

You can obtain the new property value using dot notation and the property name. For example, this command gets the BackgroundColor property value of object_handle and stores it in the variable, bc.

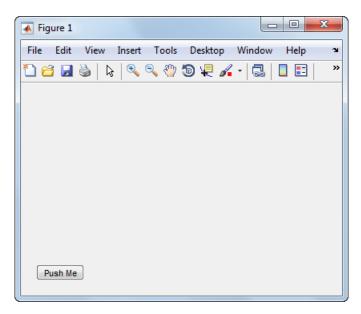
```
bc = object handle.BackgroundColor;
```

Sketch a Position Vector

rbbox is a useful function for setting positions. When you call it, you drag out a *rubber band box* anywhere in the figure. You receive a position vector for that box when you release the mouse button. Be aware that when rbbox executes.

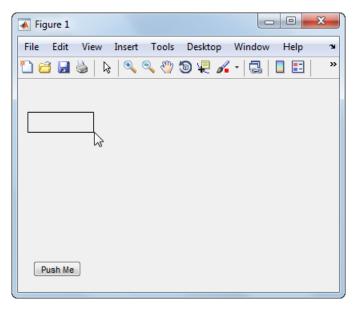
- · A figure window must have focus.
- The mouse cursor must be within the figure window.
- Your left mouse button must down.

Because of this behavior, you must call rbbox from a function or a script that waits for you to press the mouse button. The returned position vector specifies the rectangle you draw in figure units. The following function, called setpos, calls rbbox to specify a position for a component. It returns the position vector you drag out and also places it on the system clipboard:

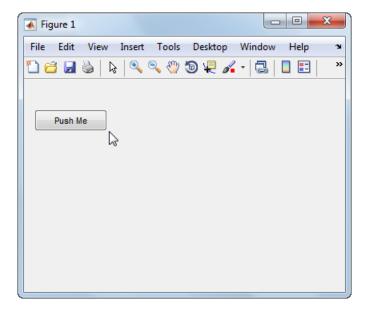

```
function rect = setpos(object handle)
% Use RBBOX to establish a position for a GUI component.
% object handle is a handle to a uicomponent that uses
% any Units. Internally, figure Units are used.
disp(['=== Drag out a Position for object ' inputname(1)])
waitforbuttonpress % So that rbbox does not return immediately
                % User drags out a rectangle, releases button
rect = rbbox;
% Pressing a key aborts rbbox, so check for null width & height
if rect(3) ~= 0 && rect(4) ~= 0
    % Save and restore original units for object
    myunits = object handle.Units;
    object handle.Units = get(gcf, 'Units');
    object handle.Position = rect;
    object handle.Units = myunits;
else
    rect = [];
end
clipboard('copy', rect)
                                % Place set string on system
                                % clipboard as well as returning it
```

The setpos function uses figure units to set the component Position property. First, setpos gets and saves the Units property of the component, and sets that property to figure units. After setting the object position, the function restores the original units of the object.

The following steps show how to use **setpos** to reposition a button away from its default position:


1 Put this statement into your GUI code file, and then execute it:

```
btn1 = uicontrol('Style','pushbutton',...
'String','Push Me');
```



2 Put the following statement in your GUI code file, execute it, and then drag out a Position for object btn1.

```
rect = setpos(btn1)
```


3 Release the mouse button. The control moves.

4 The button Position is set, returned and placed on the system clipboard:

You cannot call **setpos** when you are creating a component because **setpos** requires the handle of the component as an argument. However, you can create a small function that lets you position a component interactively as you create it. The function waits for you to press the mouse button, then calls rbbox, and returns a position rectangle when you release the mouse button:

271)

```
function rect = getrect
disp('=== Click and drag out a Position rectangle.')
waitforbuttonpress % So that rbbox does not return immediately
rect = rbbox; % User drags out a rectangle, releases button
clipboard('copy', rect) % Place set string on system
% clipboard as well as returning it
To use getrect:
```

'String', 'Push Me', 'Position', [37 362 127

In the editor, place the following statement in your GUI code file to generate a push button. Specify getrect within it as the value for the Position property:

```
btn1 = uicontrol('Style','pushbutton','String','Push Me',...
'Position',getrect);
```

- 2 Select the entire statement in the editor and execute it with the **F9** key or by rightclicking and selecting **Evaluate Selection**.
- In the figure window, drag out a rectangle for the control to occupy. When you have finished dragging, the new component displays in that rectangle. (If you type a character while you are dragging, rbbox aborts, you receive an error, and no uicontrol is created.)
- 4 In the editor, select getrect in the uicontrol statement, and type [] in place of it. The statement now looks like this:

Place your cursor between the empty brackets and type Ctrl+V, or right-click and select Paste. Allowing for differences in coordinate values, the statement looks like this one:

Remember that rbbox returns coordinates in figure units ('pixels', in this example). If the default Units value of a component is not the same as the figure, specify it to be the same when you make the component. For example, the default Units of a uipanel is 'normalized'. To sketch a uipanel position, use code that uses figure Units, as in the following example:

Two MATLAB utilities for composing GUIs can assist you in specifying positions. Use getpixelposition to obtain a position vector for a component in units of pixels regardless of its Units setting. The position origin is with respect to the parent of the component or the enclosing figure. Use setpixelposition to specify a new component position in pixels. The Units property of the component remains unchanged after calling either of these functions.

Align Components

- "Use the align Function" on page 10-60
- "Use Align Distribute Tools" on page 10-64

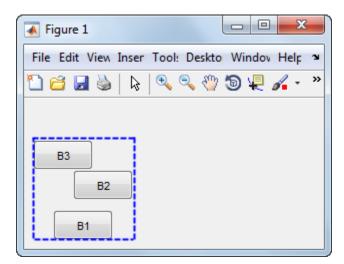
After you position components, they still might not line up perfectly. To make final adjustments, use the align function from the Command Window. As an interactive alternative, use the Align Distribute tool, a GUI available from the figure menu. The following sections describe both approaches.

Use the align Function

Use the align function to align user interface controls and axes. This function enables you to line up the components vertically and horizontally. You can also distribute the components evenly across their span or specify a fixed distance between them.

A syntax for the align function is

```
align(HandleList, 'HorizontalAlignment', 'VerticalAlignment')
```

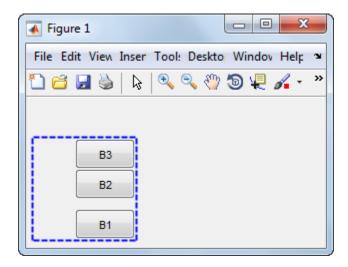

The following table lists the possible values for these parameters.

HorizontalAlignment	VerticalAlignment
None, Left, Center, Right, Distribute,	· · · · · · · · · · · · · · · · · · ·
or Fixed	or Fixed

All handles in HandleList must have the same parent. See the align reference page for information about other syntaxes.

The align function positions components with respect to their bounding box, shown as a blue dashed line in the following figures. For demonstration purposes, create three push buttons in arbitrary places using the following code.

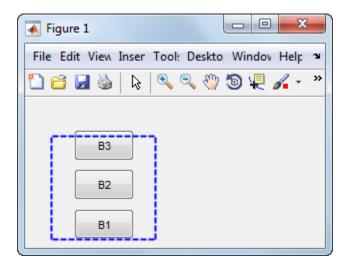
```
fh = figure('Position',[400 300 300 150])
b1 = uicontrol(fh, 'Position',[30 10 60 30], 'String', 'B1');
b2 = uicontrol(fh, 'Position',[50 50 60 30], 'String', 'B2');
b3 = uicontrol(fh, 'Position',[10 80 60 30], 'String', 'B3');
```



Note: Each of the three following align examples starts with these unaligned push buttons and repositions them in different ways. In practice, when you create buttons with

uicontrol and do not specify a Position, their location is always [20 20 60 20] (in pixels). That is, if you keep creating them with default positions, they lie on top of one another.

Align Components Horizontally

The following statement moves the push buttons horizontally to the right of their bounding box. It does not alter their vertical positions. The figure shows the original bounding box.

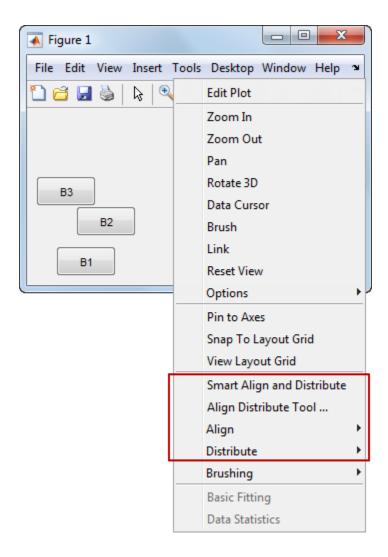

```
align([b1 b2 b3], 'Right', 'None');
```


Align Components Horizontally While Distributing Them Vertically

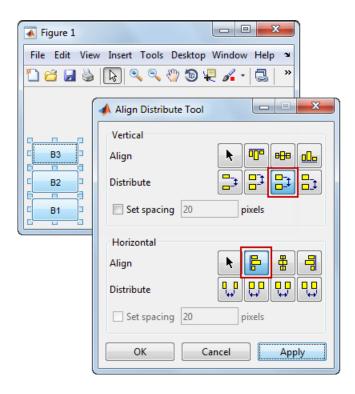
The following statement moves the push buttons horizontally to the center of their bounding box and adjusts their vertical placement. The 'Fixed' option makes the distance between the boxes uniform. Specify the distance in points (1 point = 1/72 inch). In this example, the distance is seven points. The push buttons appear in the center of the original bounding box. The bottom push button remains at the bottom of the original bounding box.

```
align([b1 b2 b3], 'Center', 'Fixed',7);
```


Align Components Vertically While Distributing Them Horizontally

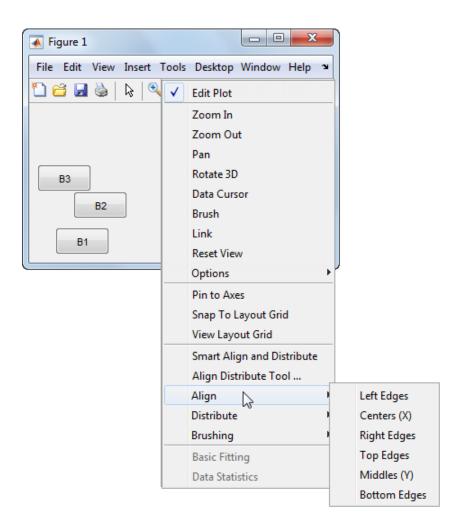

The following statement moves the push buttons to the bottom of their bounding box. It also adjusts their horizontal placement to create a fixed distance of five points between the boxes. The push buttons appear at the bottom of the original bounding box.

align([b1 b2 b3], 'Fixed',5, 'Bottom');


Use Align Distribute Tools

If your figure has a standard menu bar, you can perform align and distribute operations on selected components directly in plot edit mode. Several options from the **Tools** menu save you from typing align function commands. The align and distribute menu items are highlighted in the following illustration.

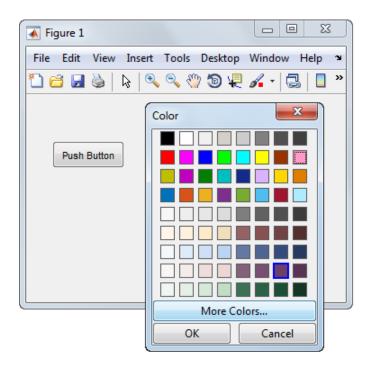
The following steps illustrate how to use the "Align Distribute tool" to arrange components in a GUI. The tool provides the same options as the align function. discussed in "Use the align Function" on page 10-60.


- 1 Select Tools > Edit Plot.
- **2** Select the components that you want to align.
- 3 Select Tools > Align Distribute Tool.
- 4 In the Vertical panel, choose the third Distribute option (the same as the align function Middle VerticalAlignment option). In the Horizontal panel, choose the first Align option (the same as the align function Left HorizontalAlignment option)
- 5 Click Apply.

The buttons align as shown.

Note: One thing to remember when aligning components is that the align function uses units of points while the Align Distribute GUI uses units of pixels. Neither method changes the Units property of the components you align, however.

You can also select the **Align** or **Distribute** option from the figure **Tools** menu to perform either operation immediately. For example, here are the six options available from the **Align** menu item.



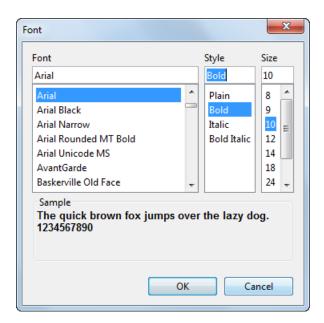
Set Colors Interactively

Specifying colors for Color, ForegroundColor, BackgroundColor, FontColor, and plotting object color properties can be difficult without seeing examples of colors. The uisetcolor function opens a GUI that returns color values you can plug into components when you create them or later, by using set. For example, this command opens a color selector GUI for you to choose a color.

object handle.BackgroundColor = uisetcolor;

When you click **OK**, **uisetcolor** returns an RGB color vector that set the color immediately. MATLAB returns an error if the object does not have a property with the specified name or if the specified property does not accept RGB color values.

You can combine setting position and color into one line of code or one function, for example:


'BackgroundColor', uisetcolor)

When you execute the statement, first getrect executes to let you set a position using rbbox. When you release the mouse button, the uisetcolor GUI opens for you to specify a background color.

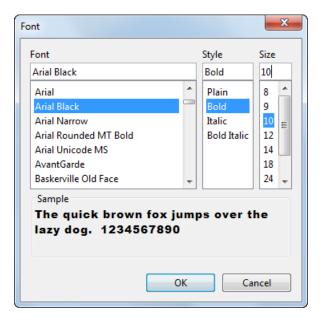
Set Font Characteristics Interactively

The uisetfont GUI gives you access to the characteristics of all fonts on your system. Use it to set font characteristics for any component that displays text. It returns a structure containing data that describes the property values you chose.

FontData = uisetfont(object handle)

FontData =

FontName: 'Arial'
FontWeight: 'bold'
FontAngle: 'normal'
FontSize: 10
FontUnits: 'points'


uisetfont returns all font characteristics at once. You cannot omit any of them unless you delete a field from the structure. You can use uisetfont when creating a component

that has a String property. You can also specify the string itself at the same time by calling inputdlg, which is a predefined GUI for entering text strings. Here is an example that creates static text and sets the font properties.

The inputdlg dialog box appears first.

After you enter a string and click OK, the uisetfont dialog box opens for you to set font characteristics for displaying the string.

When you specify a font, style, and size and click **OK**, the text appears in the figure window.

Customize Tabbing Behavior in a Programmatic GUI

In this section... "How Tabbing Works" on page 10-71 "Default Tab Order" on page 10-71 "Change the Tab Order in the uipanel" on page 10-73

How Tabbing Works

A GUI's tab order is the order in which components of the GUI acquire focus when a user presses the keyboard **Tab** key. Focus is generally denoted by a border or a dotted border.

Tab order is determined separately for the children of each parent. For example, child components of the GUI figure have their own tab order. Child components of each panel or button group also have their own tab order.


If, in tabbing through the components at one level, a user tabs to a panel or button group, then the tabbing sequences through the components of the panel or button group before returning to the level from which the panel or button group was reached. For example, if a GUI figure contains a panel that contains three push buttons and the user tabs to the panel, then the tabbing sequences through the three push buttons before returning to the figure.

Note You cannot tab to axes and static text components. You cannot determine programmatically which component has focus.

Default Tab Order

The default tab order for each level is the order in which you create the components at that level.

The following code creates a GUI that contains a pop-up menu with a static text label, a panel with three push buttons, and an axes.

You can obtain the default tab order for a figure, panel, or button group by looking at its Children property. For the example, this command gets the children of the uipanel, ph.

```
ch = ph.Children
ch =
```

```
3x1 UIControl array:
UIControl (Surf)
UIControl (Mesh)
UIControl (Contour)
```

The default tab order is the reverse of the child order; Contour, then Mesh, then Surf.

Note Displaying the children in this way shows only those children that have their HandleVisibility property set to 'on'. Use allchild to retrieve children regardless of their handle visibility.

In this example, the default order is pop-up menu followed by the panel's **Contour**, **Mesh**, and **Surf** push buttons (in that order), and then back to the pop-up menu. You cannot tab to the axes component or the static text component.

Try modifying the code to create the pop-up menu following the creation of the **Contour** push button and before the **Mesh** push button. Now execute the code to create the GUI and tab through the components. This code change does not alter the default tab order. This is because the pop-up menu does not have the same parent as the push buttons. The figure is the parent of the panel and the pop-up menu.

Change the Tab Order in the uipanel

Get the Children property of the uipanel, and then modify the order of the array elements. This code gets the children of the uipanel and stores it in the variable, **ch**.

```
ch = ph.Children
ch =
   3x1 UIControl array:
   UIControl (Surf)
   UIControl (Mesh)
   UIControl (Contour)
```

Next, call the uistack function to change the tab order of buttons. This code moves the **Mesh** button up one level, making it the last item in the tab order.

```
uistack(ch(2), 'up',1);
```

The tab order of the three buttons is now Contour, then Surf, then Mesh.

This command shows the new child order.

```
ph.Children
ans =
    3x1 UIControl array:
    UIControl (Mesh)
    UIControl (Surf)
    UIControl (Contour)
```

Note Tab order also affects the stacking order of components. If components overlap, those that appear higher in the child order, display on top of those that appear lower in the order.

Create Menus for Programmatic GUIs

In this section...

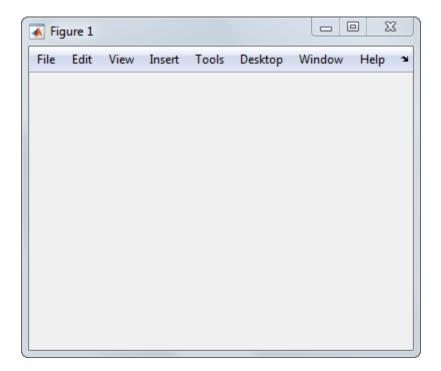
"Add Menu Bar Menus" on page 10-75

"Add Context Menus to a Programmatic GUI" on page 10-82

Add Menu Bar Menus

Use the uimenu function to add a menu bar menu to your GUI. A syntax for uimenu is

```
mh = uimenu(parent, 'PropertyName', PropertyValue,...)
```


Where mh is the handle of the resulting menu or menu item. See the uimenu reference page for other valid syntaxes.

These topics discuss use of the MATLAB standard menu bar menus and describe commonly used menu properties and offer some simple examples.

- "Display Standard Menu Bar Menus" on page 10-75
- "Commonly Used Properties" on page 10-76
- "How Menus Affect Figure Docking" on page 10-77
- "Menu Bar Menu" on page 10-79

Display Standard Menu Bar Menus

Displaying the standard menu bar menus is optional. This figure's menu bar contains the standard menus.

If you use the standard menu bar menus, any menus you create are added to it. If you choose not to display the standard menu bar menus, the menu bar contains only the menus that you create. If you display no standard menus and you create no menus, the menu bar itself does not display.

Use the figure MenuBar property to display or hide the MATLAB standard menu bar shown in the preceding figure. Set MenuBar to figure (the default) to display the standard menus. Set MenuBar to none to hide them.

```
fh.MenuBar = 'figure'; % Display standard menu bar menus.
fh.MenuBar = 'none'; % Hide standard menu bar menus.
```

In these statements, fh is the handle of the figure.

Commonly Used Properties

The most commonly used properties needed to describe a menu bar menu are shown in the following table.

Property	Values	Description
Accelerator	Alphabetic character	Keyboard equivalent. Available for menu items that do not have submenus.
Checked	off, on. Default is off.	Menu check indicator
Enable	on, off. Default is on.	Controls whether a menu item can be selected. When set to off, the menu label appears dimmed.
HandleVisibility	on, off. Default is on.	Determines if an object's handle is visible in its parent's list of children. For menus, set HandleVisibility to off to protect menus from operations not intended for them.
Label	String	Menu label. To display the & character in a label, use two & characters in the string. The words remove, default, and factory (case sensitive) are reserved. To use one of these as a label, prepend a backslash (\) to the string. For example, \remove yields remove.
Position	Scalar. Default is 1.	Position of a menu item in the menu.
Separator	off, on. Default is off.	Separator line mode

For a complete list of properties and for more information about the properties listed in the table, see Uimenu Properties.

How Menus Affect Figure Docking

When you customize the menu bar or toolbar, you can display the GUI's docking controls or not by setting DockControls appropriately, as long as the figure's WindowStyle does not conflict with that setting. You might not need menus for your GUI, but if you want the user to be able to dock or undock the GUI, it must contain a menu bar or a toolbar. This is because docking is controlled by the docking icon, a small curved arrow near the upper-right corner of the menu bar or the toolbar, as the following illustration shows.

Figure windows with a standard menu bar also have a **Desktop** menu from which the user can dock and undock them.

To display the docking arrow and the **Desktop > Dock Figure** menu item, the figure property DockControls must be set to 'on'. You can set it in the Property Inspector. In addition, the MenuBar and/or ToolBar figure properties must be set to 'on' to display docking controls.

The WindowStyle figure property also affects docking behavior. The default is 'normal', but if you change it to 'docked', then the following applies:

- The GUI opens docked in the desktop when you run it.
- The DockControls property is set to 'On' and cannot be turned off until WindowStyle is no longer set to 'docked'.
- If you undock a GUI created with WindowStyle 'docked', it will have not have a docking arrow unless the figure displays a menu bar or a toolbar (either standard or customized). When it has no docking arrow, users can undock it from the desktop, but will be unable to redock it there.

To summarize, you can display docking controls with the DockControls property as long as it is not in conflict with the figure's WindowStyle property.

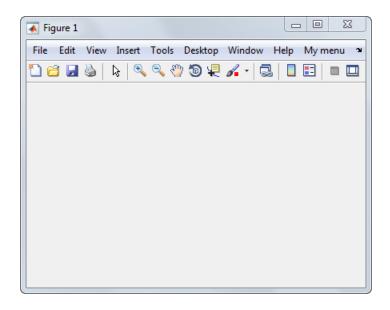
Note: GUIs that are modal dialogs (figures with WindowStyle 'modal') cannot have menu bars, toolbars, or docking controls.

For more information, see the DockControls, MenuBar, ToolBar, and WindowStyle property descriptions on the Figure Properties page.

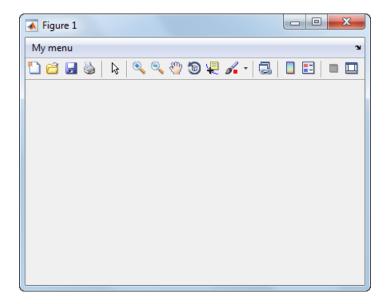
Menu Bar Menu

The following statements create a menu bar menu with two menu items.

```
mh = uimenu(fh,'Label','My menu');
eh1 = uimenu(mh,'Label','Item 1');
eh2 = uimenu(mh,'Label','Item 2','Checked','on');
```

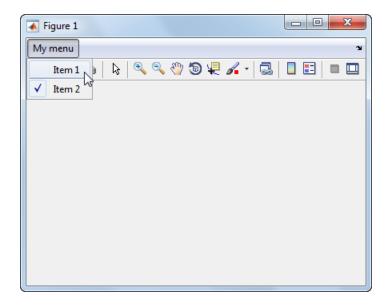

fh is the handle of the parent figure.

mh is the handle of the parent menu.

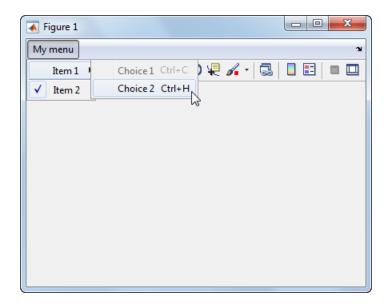

The Label property specifies the text that appears in the menu.

The Checked property specifies that this item is displayed with a check next to it when the menu is created.

If your GUI displays the standard menu bar, the new menu is added to it.



If your GUI does not display the standard menu bar, MATLAB creates a menu bar if none exists and then adds the menu to it.



This command adds a separator line preceding the second menu item.

eh2.Separator = 'on';

The following statements add two menu subitems to **Item 1**, assign each subitem a keyboard accelerator, and disable the first subitem.

The Accelerator property adds keyboard accelerators to the menu items. Some accelerators may be used for other purposes on your system and other actions may result.

The Enable property disables the first subitem **Choice 1** so a user cannot select it when the menu is first created. The item appears dimmed.

Note After you have created all menu items, set their HandleVisibility properties off by executing the following statements:

```
menuhandles = findall(figurehandle, 'type', 'uimenu');
menuhandles.HandleVisibility = 'off';
```

See the section, "Menu Item", for information about programming menu items.

Add Context Menus to a Programmatic GUI

Context menus appear when the user right-clicks on a figure or GUI component. Follow these steps to add a context menu to your GUI:

- 1 Create the context menu object using the uicontextmenu function.
- 2 Add menu items to the context menu using the uimenu function.
- **3** Associate the context menu with a graphics object using the object's UIContextMenu property.

Subsequent topics describe commonly used context menu properties and explain each of these steps:

- · "Commonly Used Properties" on page 10-82
- "Create the Context Menu Object" on page 10-83
- "Add Menu Items to the Context Menu" on page 10-83
- "Associate the Context Menu with Graphics Objects" on page 10-84
- "Force Display of the Context Menu" on page 10-86

Commonly Used Properties

The most commonly used properties needed to describe a context menu object are shown in the following table. These properties apply only to the menu object and not to the individual menu items.

Property	Values	Description
HandleVisibility	on, off. Default is on.	Determines if an object's handle is visible in its parent's list of children. For menus, set HandleVisibility to off to protect menus from operations not intended for them.
Parent	Figure handle	Handle of the context menu's parent figure.
Position	2-element vector: [distance from left, distance from bottom]. Default is [0 0].	Distances from the bottom left corner of the parent figure to the top left corner of the context menu. This property is used only when you programmatically set the context menu Visible property to on.

Property	Values	Description
Visible	off, on. Default is off	 Indicates whether the context menu is currently displayed. While the context menu is displayed, the property value is on; when the context menu is not displayed, its value is off.
		• Setting the value to on forces the posting of the context menu. Setting to off forces the context menu to be removed. The Position property determines the location where the context menu is displayed.

For a complete list of properties and for more information about the properties listed in the table, see Uicontextmenu Properties.

Create the Context Menu Object

Use the uicontextmenu function to create a context menu object. The syntax is

```
handle = uicontextmenu('PropertyName',PropertyValue,...)
```

The parent of a context menu must always be a figure. Use the context menu Parent property to specify its parent. If you do not specify Parent, the parent is the current figure as specified by the root CurrentFigure property.

The following code creates a figure and a context menu whose parent is the figure. At this point, the figure is visible, but not the menu.

```
fh = figure('Position',[300 300 400 225]);
cmenu = uicontextmenu('Parent',fh,'Position',[10 215]);
```

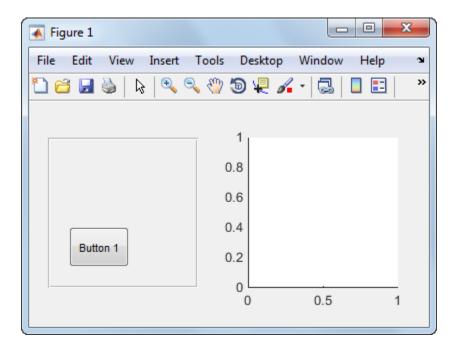
Note "Force Display of the Context Menu" on page 10-86 explains the use of the Position property.

Add Menu Items to the Context Menu

Use the uimenu function to add items to the context menu. The items appear on the menu in the order in which you add them. The following code adds three items to the context menu created above.

```
mh1 = uimenu(cmenu, 'Label', 'Item 1');
mh2 = uimenu(cmenu, 'Label', 'Item 2');
mh3 = uimenu(cmenu, 'Label', 'Item 3');
```

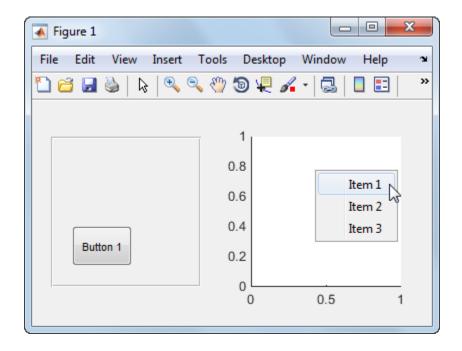
You can specify any applicable Uimenu Properties when you define the context menu items. See the uimenu reference page and "Add Menu Bar Menus" on page 10-75 for information about using uimenu to create menu items. Note that context menus do not have an Accelerator property.


Note After you have created the context menu and all its items, set their HandleVisibility properties to 'off' by executing the following statements:

```
cmenuhandles = findall(figurehandle,'type','uicontextmenu');
cmenuhandles.HandleVisibility = 'off';
menuitemhandles = findall(cmenuhandles,'type','uimenu');
menuitemhandles.HandleVisibility = 'off';
```

Associate the Context Menu with Graphics Objects

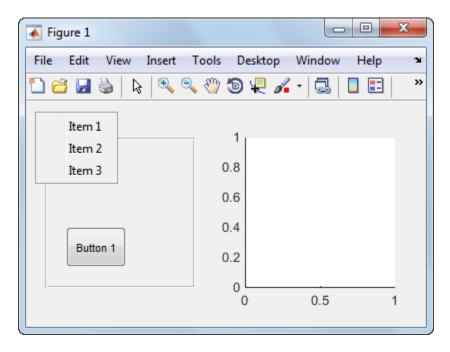
You can associate a context menu with the figure itself and with all components that have a UIContextMenu property. This includes axes, panel, button group, all user interface controls (uicontrols).


This code adds a panel and an axes to the figure. The panel contains a single push button.

This code associates the context menu with the figure and with the axes by setting the UIContextMenu property of the figure and the axes to the handle cmenu of the context menu.

```
fh.UIContextMenu = cmenu; % Figure
ah.UIContextMenu = cmenu; % Axes
```

Right-click on the figure or on the axes. The context menu appears with its upper-left corner at the location you clicked. Right-click on the panel or its push button. The context menu does not appear.



Force Display of the Context Menu

If you set the context menu Visible property on, the context menu is displayed at the location specified by the Position property, without the user taking any action. In this example, the context menu Position property is [10 215].

```
cmenu.Visible = 'on';
```

The context menu displays 10 pixels from the left of the figure and 215 pixels from the bottom.

If you set the context menu Visible property to ${\tt off}$, or if the user clicks the GUI outside the context menu, the context menu disappears.

Create Toolbars for Programmatic GUIs

In this section... "Use the uitoolbar Function" on page 10-88 "Commonly Used Properties" on page 10-88 "Toolbars" on page 10-89 "Display and Modify the Standard Toolbar" on page 10-92

Use the uitoolbar Function

Use the uitoolbar function to add a custom toolbar to your GUI. Use the uipushtool and uitoggletool functions to add push tools and toggle tools to a toolbar. A push tool functions as a push button. A toggle tool functions as a toggle button. You can add push tools and toggle tools to the standard toolbar or to a custom toolbar.

Syntaxes for the uitoolbar, uipushtool, and uitoggletool functions include the following:

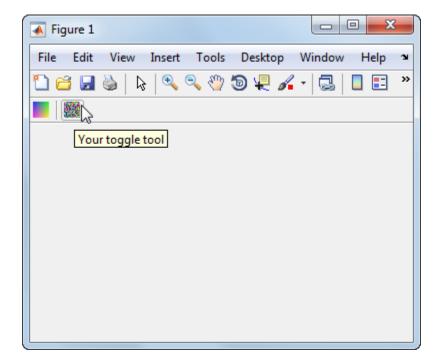
```
tbh = uitoolbar(fh, 'PropertyName', PropertyValue,...)
pth = uipushtool(tnh, 'PropertyName', PropertyValue,...)
tth = uitoggletool(tbh, 'PropertyName', PropertyValue,...)
```

The output arguments, tbh, pth, and tth are the handles, respectively, of the resulting toolbar, push tool, and toggle tool. See the uitoolbar, uipushtool, and uitoggletool reference pages for other valid syntaxes.

Subsequent topics describe commonly used properties of toolbars and toolbar tools, offer a simple example, and discuss use of the MATLAB standard toolbar:

Commonly Used Properties

The most commonly used properties needed to describe a toolbar and its tools are shown in the following table.


Property	Values	Description
CData		n-by-m-by-3 array of RGB values
	between 0.0 and 1.0	that defines a truecolor image

Property	Values	Description
		displayed on either a push button or toggle button.
HandleVisibility	on, off. Default is on.	Determines if an object's handle is visible in its parent's list of children. For toolbars and their tools, set HandleVisibility to off to protect them from operations not intended for them.
Separator	off, on. Default is off.	Draws a dividing line to left of the push tool or toggle tool
State	off, on. Default is off.	Toggle tool state. On is the down, or depressed, position. Off is the up, or raised, position.
TooltipString	String	Text of the tooltip associated with the push tool or toggle tool.

For a complete list of properties and for more information about the properties listed in the table, see the Uitoolbar Properties, Uipushtool Properties, and Uitoggletool Properties.

Toolbars

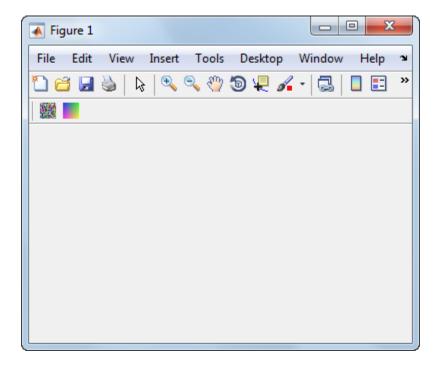
The following statements add a toolbar to a figure, and then add a push tool and a toggle tool to the toolbar. By default, the tools are added to the toolbar, from left to right, in the order they are created.

fh is the handle of the parent figure.

th is the handle of the parent toolbar.

CData is a 16-by-16-by-3 array of values between 0 and 1. It defines the truecolor image that is displayed on the tool. If your image is larger than 16 pixels in either dimension, it may be clipped or cause other undesirable effects. If the array is clipped, only the center 16-by-16 part of the array is used.

Note See the ind2rgb reference page for information on converting a matrix X and corresponding colormap, i.e., an (X, MAP) image, to RGB (truecolor) format.


TooltipString specifies the tooltips for the push tool and the toggle tool as My push tool and Your toggle tool, respectively.

In this example, setting the toggle tool Separator property to on creates a dividing line to the left of the toggle tool.

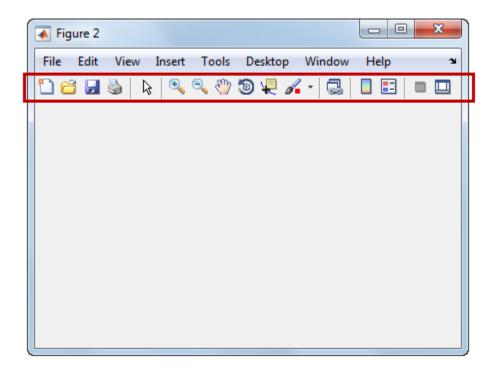
You can change the order of the tools by modifying the child vector of the parent toolbar. For this example, execute the following code to reverse the order of the tools.

```
oldOrder = allchild(tbh);
newOrder = flipud(oldOrder);
tbh.Children = newOrder;
```

This code uses flipud because the Children property is a column vector.

Use the delete function to remove a tool from the toolbar. The following statement removes the toggle tool from the toolbar. The toggle tool handle is tth.

delete(tth)


If necessary, you can use the findall function to determine the handles of the tools on a particular toolbar.

Note After you have created a toolbar and its tools, set their HandleVisibility properties off by executing statements similar to the following:

```
toolbarhandle.HandleVisibility = 'off';
toolhandles = toolbarhandle.Children;
toolhandles.HandleVisibility = 'off';
```

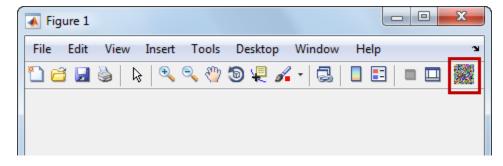
Display and Modify the Standard Toolbar

You can choose whether or not to display the MATLAB standard toolbar (highlighted in red below). You can also add or delete tools from the standard toolbar.

Display the Standard Toolbar

Use the figure Toolbar property to display or hide the standard toolbar. Set Toolbar to 'figure' to display the standard toolbar. Set Toolbar to 'none' to hide it.

```
fh.Toolbar = 'figure'; % Display the standard toolbar
fh.Toolbar = 'none'; % Hide the standard toolbar
```


In these statements, fh is the handle of the figure.

The default ToolBar value is 'auto', which uses the MenuBar property value.

Modify the Standard Toolbar

Once you have the handle of the standard toolbar, you can add tools, delete tools, and change the order of the tools.

Add a tool the same way you would add it to a custom toolbar. This code gets the handle of the standard toolbar and adds a toggle tool to it.

To remove a tool from the standard toolbar, determine the handle of the tool to be removed, and then use the **delete** function to remove it. The following code deletes the toggle tool that was added to the standard toolbar above.

```
delete(tth)
```

If necessary, you can use the findall function to determine the handles of the tools on the standard toolbar.

Fonts and Colors for Cross-Platform Compatibility

In this section...

"Default System Font" on page 10-94

"Standard Background Color" on page 10-95

Default System Font

By default, user interface controls (uicontrols) use the default font for the platform on which they are running. For example, when displaying your GUI on PCs, user interface controls use MS San Serif. When your GUI runs on a different platform, they use that computer's default font. This provides a consistent look with respect to your GUI and other application GUIs on the same platform.

If you have set the FontName property to a named font and want to return to the default value, you can set the property to the string, 'default'. This ensures that MATLAB software uses the system default at run-time.

```
pbh1.FontName = 'default';
```

Specify a Fixed-Width Font

If you want to use a fixed-width font for a user interface control, set its FontName property to the string, 'fixedwidth'. This special identifier ensures that your GUI uses the standard fixed-width font for the target platform.

You can find the name of the fixed-width font that is used on a given platform by querying the root FixedWidthFontName property.

```
get(groot, 'FixedWidthFontName')
```

Use a Specific Font Name

You can specify an actual font name (such as Times or Courier) for the FontName property. However, doing so may cause your GUI to appear differently than you intended when run on a different computer. If the target computer does not have the specified font, it substitutes another font that may not look good in your GUI or may not be the standard font used for GUIs on that system. Also, different versions of the same named font may have different size requirements for a given set of characters.

Standard Background Color

MATLAB software uses the standard system background color of the system on which the GUI is running as the default component background color. This color varies on different computer systems, e.g., the standard shade of gray on the PC differs from that on UNIX system, and may not match the default GUI background color.

You can make the GUI background color match the default component background color. This code gets the default component background color and assign it to the figure.

```
defaultBackground = get(groot, 'defaultUicontrolBackgroundColor');
fh.Color = defaultBackground;
```

Code a Programmatic GUI

- "Initialize a Programmatic GUI" on page 11-2
- "Write Callbacks Using the Programmatic Workflow" on page 11-5

Initialize a Programmatic GUI

When you open a GUI, it usually initializes certain data structures and variable values. These actions can include:

- · Defining default values
- Setting UI component property values
- Processing input arguments
- Hiding the figure window until all the components are created

Group these tasks together rather than scattering them throughout the code. If an initialization task is long or complex, consider creating a utility function to do the work.

Examples

Declare Variables for Input and Output Arguments

These are typical declarations for input and output arguments.

See the varargin reference page for more information.

Define Custom Property/Value Pairs

This example defines the properties in a cell array, mPropertyDefs, and then initializes the properties.

Each row of the cell array defines one property. It specifies, in order, the name of the property, the routine that is called to validate the input, and the name of the variable that holds the property value.

The fullfile function builds a full filename from parts.

The following statements start the Icon Editor application. The first statement creates a new icon. The second statement opens existing icon file for editing.

```
cdata = iconEditor('iconwidth',16,'iconheight',25)
cdata = iconEditor('iconfile','eraser.gif');
```

iconEditor calls a routine, processUserIputs, during the initialization to accomplish these tasks:

- · Identify each property by matching it to the first column of the cell array
- · Call the routine named in the second column to validate the input
- · Assign the value to the variable named in the third column

Make the Figure Invisible

When you create the GUI figure, make it invisible when you create it. Display it only after you have added all the UI components.

To make the GUI invisible, set the figure Visible property to 'Off' when you create the figure:

After you have added all the components to the figure window, make the figure visible:

```
hMainFigure.Visible = 'on';
```

Most components have a Visible property. Thus, you can also use this property to make individual components invisible.

Return Output to the User

If your GUI function provides for an argument to the left of the equal sign, and the user specifies such an argument, then you want to return the expected output. The code that provides this output usually appears just before the GUI main function returns.

In the example shown here,

- 1 A call to uiwait blocks execution until uiresume is called or the current figure is deleted.
- **2** While execution is blocked, the user creates the icon.
- 3 When the user clicks **OK**, that push button's callback calls the uiresume function.
- **4** The GUI then returns the completed icon to the user as output of the GUI.

```
% Make the GUI blocking.
uiwait(hMainFigure);
% Return the edited icon CData if it is requested.
mOutputArgs{1} = mIconCData;
if nargout>0
    [varargout{1:nargout}] = mOutputArgs{:};
end
```

mIconData contains the icon that the user created or edited. mOutputArgs is a cell array defined to hold the output arguments. nargout indicates how many output arguments the user has supplied. varargout contains the optional output arguments returned by the GUI. See the complete Icon Editor code file for more information.

Write Callbacks Using the Programmatic Workflow

In this section...

"Callbacks for Different User Actions" on page 11-5

"How to Specify Callback Property Values" on page 11-7

"Callback Syntax" on page 11-9

Callbacks for Different User Actions

UI and graphics components have certain properties that you can associate with specific callback functions. Each of these properties corresponds to a specific user action. For example, a uicontrol has a property called Callback. You can set the value of this property to be a handle to a callback function, an anonymous function, or a string containing MATLAB commands. Setting this property makes your GUI respond when the user interacts with the uicontrol. If the Callback property has no specified value, then nothing happens when the end user interacts with the uicontrol.

This table lists the callback properties that are available, the user actions that trigger the callback function, and the most common UI and graphics components that use them.

Callback Property	User Action	Components That Use This Property
ButtonDownFcn	End user presses a mouse button while the pointer is on the component or figure.	axes, figure, uibuttongroup, uicontrol, uipanel, uitable,
Callback	End user triggers the component. For example: selecting a menu item, moving a slider, or pressing a push button.	uicontextmenu, uicontrol, uimenu
CellEditCallback	End user edits a value in a table whose cells are editable.	uitable
CellSelectionCall	End user selects cells in a table.	uitable
ClickedCallback	End user clicks the push tool or toggle tool with the left mouse button.	uitoggletool, uipushtool
CloseRequestFcn	The figure closes.	figure

Callback Property	User Action	Components That Use This Property
CreateFcn	Callback executes when MATLAB creates the object, but before it is displayed.	axes, figure, uibuttongroup, uicontextmenu, uicontrol, uimenu, uipushtool, uipanel, uitable, uitoggletool, uitoolbar
DeleteFcn	Callback executes just before MATLAB deletes the figure.	axes, figure, uibuttongroup, uicontextmenu, uicontrol, uimenu, uipushtool, uipanel, uitable, uitoggletool, uitoolbar
KeyPressFcn	End user presses a keyboard key while the pointer is on the object.	figure, uicontrol, uipanel, uipushtool, uitable, uitoolbar
KeyReleaseFcn	End user releases a keyboard key while the pointer is on the object.	figure, uicontrol, uitable
OffCallback	Executes when the State of a toggle tool changes to 'off'.	uitoggletool
OnCallback	Executes when the State of a toggle tool changes to 'on'.	uitoggletool
SizeChangedFcn	End user resizes a button group, figure, or panel whose Resize property is 'on'.	figure, uipanel, uibuttongroup
SelectionChange	End user selects a different radio button or toggle button within a button group.	uibuttongroup
WindowButtonDo	End user presses a mouse button while the pointer is in the figure window.	figure
WindowButtonM	End user moves the pointer within the figure window.	figure
WindowButtonUl	End user releases a mouse button.	figure
WindowKeyPress	End user presses a key while the pointer is on the figure or any of its child objects.	figure

Callback Property	User Action	Components That Use This Property
	End user releases a key while the pointer is on the figure or any of its child objects.	figure
	End user turns the mouse wheel while the pointer is on the figure.	figure

How to Specify Callback Property Values

To associate a callback function with a UI component, set the value of one of the component's callback properties to be a reference to the callback function. Typically, you do this when you define the component, but you can change callback property values anywhere in your code.

Specify the callback property value in one of these ways:

- "Specify a Function Handle" on page 11-7.
- "Specify a Cell Array" on page 11-8. This cell array contains a function handle
 as the first element, followed by and any input arguments you want to use in the
 function.
- "Specify a String of MATLAB Commands (Not Recommended)" on page 11-9

Specify a Function Handle

Function handles provide a way for you to represent a function as a variable. You define the function as a local or nested function in the same file as the GUI code, or you can write it in a separate program file that is on the MATLAB path. The function definition must define two input arguments, hObject and callbackdata. Handle Graphics automatically passes hObject and callbackdata when it calls the function. For more information about these arguments, see "Callback Syntax" on page 11-9.

This code creates a slider component and specifies its callback as a function handle. To see how it works, copy and paste this code into an editor and run it.

```
function mygui()
   figure
   uicontrol('Style','slider','Callback',@display_slider_value);
end
function display_slider_value(hObject,callbackdata)
   newval = num2str(hObject.Value);
```

```
disp(['Slider moved to ' newval]);
end
```

This callback function displays the value of the slider when the end user adjusts it. A benefit of specifying callbacks as function handles is that MATLAB checks the function for syntax errors and missing dependencies when you assign the callback to the component. If there is a problem in the callback function, then MATLAB returns an error immediately instead of waiting for the end user to trigger the callback. This behavior helps you to find problems in your code before the end user encounters them.

Note: If you want to use an existing function that does not support the hObject and callbackdata arguments, then you can specify it as an anonymous function. For example,

uicontrol('Style','slider','Callback',@(hObject,callbackdata)myfunction(x)); In this case, x is an input argument to the function, myfunction. See "Anonymous Functions" for more information.

Specify a Cell Array

Use a cell array to specify a callback function that accepts input arguments that you want to use in the function. The first element in the cell array is a function handle. The other elements in the cell array are the input arguments to the function, separated by commas. For example, this code creates a push button component and specifies its callback to be a cell array containing the function handle, <code>@pushbutton_callback</code>, and one input argument, <code>myvar</code>. To see how it works, copy and paste this code into an editor and run it.

The function definition must define two input arguments, hObject and callbackdata, followed by any additional arguments the function uses. Handle Graphics automatically passes the hObject and callbackdata arguments when it calls the function. If you define additional input arguments, then the values you pass to the callback must exist in the workspace when the end user triggers the callback.

Like callbacks specified as function handles, MATLAB checks callbacks specified as cell arrays for syntax errors and missing dependencies when you assign the callback to the component. If there is a problem in the callback function, then MATLAB returns an error immediately instead of waiting for the end user to trigger the callback. This behavior helps you to find problems in your code before the end user encounters them.

Specify a String of MATLAB Commands (Not Recommended)

You can use string callbacks for a few simple commands, but the callback can become difficult to manage if it contains more than a few commands. The string you specify must consist of valid MATLAB expressions, which can include arguments to functions. For example:

The callback string, 'plot(rand(20,3))', is a valid command, and MATLAB evaluates it when the end user clicks the button. If the callback string includes a variable, for example,

```
'plot(myvar)'
```

The variable, myvar, must exist in the base workspace when the end user triggers the callback, or it returns an error. The variable does not need to exist at the time you assign callback property value, but it must exist when the end user triggers the callback.

Unlike callbacks that are specified as function handles or cell arrays, MATLAB does *not* check string callbacks for syntax errors or missing dependencies. If there is a problem with the code in your string, it remains undetected until the end user triggers the callback.

Callback Syntax

All callback functions that you reference as function handles or cell arrays must accept the at least two input arguments, hObject and callbackdata. All other input arguments must appear after hObject and callbackdata in the function definition.

The hObject argument is a handle to the UI component that triggered the callback. The callbackdata argument provides additional information to certain callback functions. For example, if the end user triggers the KeyPressFcn, then MATLAB provides information regarding the specific key (or combination of keys) that the end user pressed. If callbackdata is not available to the callback function, then MATLAB passes

it as an empty array. The following table lists the callbacks and components that use ${\tt callbackdata}$.

Callback Property Name	Component
WindowKeyPressFcn WindowKeyReleaseFcn WindowScrollWheel	figure
KeyPressFcn	figure, uicontrol, uitable
KeyReleaseFcn	figure, uicontrol, uitable
SelectionChangedFcn	uibuttongroup
CellEditCallback CellSelectionCallback	uitable

Manage Application-Defined Data

Share Data Among Callbacks

In this section...

"Overview of Data Sharing Techniques" on page 12-2

"Store Data in UserData or Other Object Properties" on page 12-3

"Store Data as Application Data" on page 12-4

"Create Nested Callback Functions (Programmatic GUIs)" on page 12-5

"Store Data Using the guidata Function" on page 12-6

"Sharing Data Among Multiple GUIDE GUIS" on page 12-9

Overview of Data Sharing Techniques

Many GUIs contain interdependent controls, menus, and graphics objects. Since each callback function has its own scope, you must explicitly share data with those parts of your GUI that need to access it. The table below describes several different methods for sharing data within your GUI.

Method	Description	Requirements and Trade-Offs
"Store Data in UserData or Other Object Properties" on page 12-3	Use dot syntax, object.property, to store or retrieve the value of an object property. All UI components have a UserData property that can store any MATLAB data.	 Requires access to the object to set or retrieve the object properties. UserData holds only one variable at a time, but you can store multiple values as a struct array or cell array.
"Store Data as Application Data" on page 12-4	Associate data with a specific component using the setappdata function. You can access it later using the getappdata function.	 Requires access to an object handle to set or retrieve the application data. Can share multiple variables.
"Create Nested Callback Functions (Programmatic	Nest your callback functions inside your main GUI function. This gives your callback functions access to all the variables in the main GUI function.	 Requires that functions be coded in the same file as the main GUI code. Not recommended for GUIDE GUIs.

Method	Description	Requirements and Trade-Offs
GUIs)" on page 12-5		Can share multiple variables.
"Store Data Using the guidata Function" on page 12-6	Share data with the GUI figure using the guidata function.	 Stores or retrieves the data through any UI component. Stores only one variable at a time, but you can store multiple values as a struct array or cell array.

Store Data in UserData or Other Object Properties

UI components contain useful information in their properties, which you can access directly as long as you have the component handle. If you do not have a handle to the component, then use the findobj function to search for a handle that has a known property value. You can store any data in the UserData property of a UI component or figure. For example, the following programmatic GUI code uses the UserData property to share information about the slider. To see how it works, copy and paste this code into an editor and run it.

```
function my slider()
hfig = figure();
slider = uicontrol('Parent', hfig,'Style','slider',...
         'Units','normalized',...
         'Position',[0.3 0.5 0.4 0.1],...
         'Tag','slider1',...
         'UserData', struct('val', 0, 'diffMax', 1),...
         'Callback', @slider callback);
button = uicontrol('Parent', hfig,'Style','pushbutton',...
         'Units','normalized',...
         'Position',[0.4 0.3 0.2 0.1],...
         'String' 'Display Difference' ....
         'Callback', @button callback);
end
function slider callback(hObject, eventdata)
 sval = hObject.Value;
 diffMax = hObject.Max - sval;
 data = struct('val',sval,'diffMax',diffMax);
 hObject.UserData = data;
```

end

```
function button_callback(hObject,eventdata)
h = findobj('Tag','slider1');
data = h.UserData;
display([data.val data.diffMax]);
end
```

When the end user moves the slider, the <code>slider_callback</code> function stores the current slider value and the difference between the current and maximum values in the <code>UserData</code> property. When the end user clicks the push button, the <code>button_callback</code> function finds the handle to the component containing the <code>Tag</code> property, <code>'slider1'</code>. Then, the last two commands in the <code>button_callback</code> function get and display the values stored in the slider's <code>UserData</code> property, respectively.

You can store any MATLAB variable in the UserData property. The syntax for storing and retrieving data is the same for GUIDE and programmatic GUIs.

Store Data as Application Data

You can share data in a GUI using a facility called application data. To store application data, you call the setappdata function:

```
setappdata(h,name,value);
```

The first input, h, is the handle to the component with which to associate the data. The second input, name, is string that identifies the value. The third input, value, is the value you want to store.

To retrieve application data, use the getappdata function:

```
data = getappdata(h,name);
```

The handle, h, must be a handle to the component associated with the data. The second input, name, must match the string you used to store the data. Unlike UserData, which only stores only one variable, application data can accommodate multiple variables.

The following programmatic GUI code uses application data to share two values. To see how it works, copy and paste this code into an editor and run it.

```
function my_slider()
hfig = figure();
setappdata(hfig, 'slidervalue',0);
setappdata(hfig, 'difference',1);
slider = uicontrol('Parent', hfig, 'Style', 'slider',...
```

```
'Units', 'normalized'....
         'Position',[0.3 0.5 0.4 0.1],...
         'Tag','slider1',...
         'Callback',@slider callback);
button = uicontrol('Parent', hfig,'Style','pushbutton',...
         'Units','normalized',...
         'Position',[0.4 0.3 0.2 0.1],...
         'String', 'Display Values',...
         'Callback', @button callback);
end
function slider callback(hObject, eventdata)
 diffMax = hObject.Max - hObject.Value;
 setappdata(hObject.Parent, 'slidervalue',hObject.Value);
 setappdata(hObject.Parent, 'difference', diffMax);
end
function button callback(hObject, eventdata)
 currentval = getappdata(hObject.Parent, 'slidervalue');
 diffval = getappdata(hObject.Parent, 'difference');
 display([currentval diffval]);
end
```

When the end user moves the slider, the slider_callback function calls setappdata to save the new slider value as application data using the name, 'slidervalue'. The next line of code calls setappdata to save another value, diffMax, using the name, 'difference'. Both calls to setappdata associate the data with the parent object, which is the GUI figure in this case.

When the end user clicks the push button, the button_callback function calls getappdata to retrieve the values named 'slidervalue' and 'difference'. Then, the final command in the button_callback function displays those values.

The setappdata and getappdata syntaxes are the same for GUIDE and programmatic GUIs.

Create Nested Callback Functions (Programmatic GUIs)

You can nest callback functions inside the main function of a programmatic GUI. When you do this, the nested callback functions share a workspace with the main function. As a result, the nested functions have access to all the GUI handles and variables defined in the main function. The following example code uses nested functions to share data about

the slider position. To see how it works, copy and paste this code into an editor and run it.

```
function my slider()
hfig = figure();
data = struct('val',0,'diffMax',1);
slider = uicontrol('Parent', hfig,'Style','slider',...
         'Units', 'normalized',...
         'Position',[0.3 0.5 0.4 0.1],...
         'Tag','slider1',...
         'Callback', @slider callback);
button = uicontrol('Parent', hfig,'Style','pushbutton',...
         'Units', 'normalized',...
         'Position',[0.4 0.3 0.2 0.1],...
         'String', 'Display Difference'....
         'Callback', @button callback);
function slider callback(hObject, eventdata)
  sval = hObject.Value;
  diffMax = hObject.Max - sval;
  data.val = sval;
  data.diffMax = diffMax;
end
function button callback(hObject, eventdata)
 display([data.val data.diffMax]);
end
end
```

The main function defines a struct array called data. When the end user moves the slider, the slider_callback function updates the val and diffMax fields of the data structure. When the end user clicks the push button, the button_callback function displays the values stored in data.

Note: Nested functions are not recommended for GUIDE GUIs.

Store Data Using the guidata Function

The guidata function provides a way to share data with the GUI figure. You can store or retrieve the your data in any callback through the hObject handle. This means that, unlike working with UserData or application data, you do not have to search

for a specific UI component handle to access your data. Call guidata with two input arguments to store data:

```
guidata(object handle,data);
```

The first input, object_handle, is a handle to any component in the GUI (typically hObject). The second input, data, is the variable to store. Every time you call guidata using two input arguments, MATLAB overwrites any previously stored data. This means you can only store one variable at a time. If you want to share multiple values, then store the data as a struct array or cell array.

To retrieve data, call guidata using one input argument and one output argument:

```
data = guidata(object_handle);
```

The handle you specify to store the data does not need to be the same handle that you use to retrieve it.

If your data is stored as a **struct** array or cell array, and you want to update one element without changing the other elements, then retrieve the data and replace it with the modified array:

```
data = guidata(hObject);
data.myvalue = 2;
guidata(hObject,data);
```

Use guidata in a Programmatic GUI

To use guidata in a programmatic GUI, store the data with some initial values in the main function. Then you can retrieve and modify the data in any callback function.

The following code is a simple example of a programmatic GUI that uses guidata to share a struct array containing two fields. To see how it works, copy and paste this code into an editor and run it.

When the end user moves the slider, the slider_callback function calls guidata to retrieve a copy of the stored struct array. The next two lines of code modify the struct array. The last line in the function replaces the stored struct array with the modified copy.

When the end users clicks the push button, the button_callback function calls guidata to retrieve a copy of the stored struct array. Then it displays the two values stored in the array.

Use guidata in a GUIDE GUI

GUIDE uses guidata to store a struct array called handles, which contains all the handles in the GUI. MATLAB passes the handles array to every callback function. If you want to use guidata to share additional data, then add fields to the handles structure in the OpeningFcn callback. To modify your data in a callback function, modify the handles array, and then store it using guidata. This slider callback function shows how to modify and store the handles array in a callback function.

```
function slider1_Callback(hObject,eventdata,handles)
handles.myvalue = 2;
guidata(hObject,handles);
end
```

To see a full example of a GUIDE GUI that uses the guidata function, follow these steps to copy and examine the code.

1 Set your current folder to one to which you have write access.

2 Copy the example code.

```
copyfile(fullfile(docroot, 'techdoc','creating_guis',...
   'examples','sliderbox_guidata.*')),...
fileattrib('sliderbox_guidata.*', '+w');
```

3 Display this example in the GUIDE Layout Editor:

```
guide sliderbox guidata.fig
```

- View the code in the Editor by clicking the **Editor** button, **.**
- 5 Run the GUI by clicking the **Run Figure** button, .

Sharing Data Among Multiple GUIDE GUIs

Example of Sharing Data Between Two GUIs

To see a full-featured example that uses application data and the guidata function to share data between two separate GUIs, use these steps to copy, run, and examine the code.

- 1 Set your current folder to one to which you have write access.
- **2** Copy the example code with this command:

```
copyfile(fullfile(docroot, 'techdoc','creating_guis','examples'...
,'changeme*.*')),fileattrib('changeme*.*', '+w');
```

3 Display the GUIs in two GUIDE Layout Editors with these commands:

```
guide changeme_main
guide changeme_dialog
```

- View the code in the editor by clicking the **Editor** button, **E**, in both Layout Editors.
- 5 Run the changeme_main GUI by clicking Run Figure button, ▶, in that GUI Layout Editor.

Example of Sharing Data Among Three GUIs

To see a full-featured example that uses guidata and UserData data to share data among three GUIs, use these steps to copy, run, and examine the code.

- 1 Set your current folder to one to which you have write access.
- 2 Copy the example code with this command

```
copyfile(fullfile(docroot, 'techdoc','creating_guis',...
    'examples','guide*.*')),...
    fileattrib('guide*.*', '+w');
```

3 Display the GUIs in three GUIDE Layout Editors with these commands:

```
guide guide_iconeditor;
guide guide_toolpalette;
guide guide_colorpalette;
```

- 4 View the code in the editor by clicking the **Editor** button, , in each Layout Editor.
- Run the guide_iconeditor GUI by clicking Run Figure button, , in that GUI Layout Editor.

More About

"Nested Functions"

Manage Callback Execution

Interrupt Callback Execution

In this section...

"Control Callback Execution and Interruption" on page 13-2

"Control Program Execution Using Timer Objects" on page 13-10

Control Callback Execution and Interruption

- "Order of Callback Execution" on page 13-3
- · "How the Interruptible Property Works" on page 13-3
- "How the Busy Action Property Works" on page 13-5
- "Example" on page 13-5

Callback execution is event driven and callbacks from different GUIs share the same event queue. In general, callbacks are triggered by user events such as a mouse click or key press. When a callback initiates, under this event model you cannot know whether another callback is executing. If a callback is executing, your code cannot tell which callback that is.

If a callback is executing and the user triggers an event for which a callback is defined, that callback attempts to interrupt the callback that is already executing. When this occurs, MATLAB software processes the callbacks according to the values of two properties:

- The Interruptible property of the object whose callback is already executing. The Interruptible property specifies whether the executing callback can be interrupted. The default value for uicontrol objects is 'on', allowing interruption.
- The BusyAction property of the object whose callback has just been triggered and is about to execute. The BusyAction property specifies whether to *queue* the callback to await execution or *cancel* the callback. The default property value is 'queue'.

Note: For information about what callbacks are and do, see "Write Callbacks Using the Programmatic Workflow" on page 11-5.

Order of Callback Execution

Interacting with figures and graphic objects can trigger a variety of callbacks. More than one callback can execute in response to a given user action, such as a button or key press. In particular, figure window callbacks can respond to some of the same events as uicontrol, uipanel, and uitable callbacks. In most cases, the callbacks execute in a well-defined order. Some applications need to attend to the order of execution in order to respond to user gestures appropriately and consistently, especially when several callbacks are triggered by the same gesture. The following list indicates the normal order of execution of callbacks in response to mouse button presses and movements in figures and graphic objects:

- 1 Figure WindowButtonMotionFcn (mouse button can be up or down; no similar callback exists for objects)
- 2 Figure WindowButtonDownFcn
- **3** Figure ButtonDownFcn
- 4 Object Callback (if Enable is on for object)
- 5 Object ButtonDownFcn (if Enable is off for object)
- **6** Figure WindowButtonUpFcn (no similar callbacks exist)

A different set of callbacks exist to respond to keyboard events. Almost all keyboard callbacks belong to figure windows. The following list indicates the normal order of execution of callbacks in response to keyboard events in figure windows and graphic objects:

- 1 WindowKeyPressFcn (in figure window or any of its child objects)
- 2 KeyPressFcn (figure window callback)
- 3 KeyPressFcn (uicontrol and uitable callback)
- 4 KeyReleaseFcn (in figure window only)
- 5 WindowKeyReleaseFcn (in figure window or any of its child objects)

How the Interruptible Property Works

You can set an object's Interruptible property to either on (the default) or off.

If the Interruptible property of the object whose callback is executing is on, the callback can be interrupted. However, it is interrupted only when it, or a function it triggers, calls drawnow, figure, getframe, pause, or waitfor. Before performing their defined tasks, these functions process any events in the event queue, including any

waiting callbacks. If the executing callback, or a function it triggers, calls none of these functions, it cannot be interrupted regardless of the value of its object's Interruptible property.

If the Interruptible property of an object is set to 'off', then that object's callback cannot be interrupted, unless both of the following items are true:

- The callback calls drawnow, figure, getframe, pause, or waitfor.
- The interrupting callback is a DeleteFcn, CloseRequestFcn, or SizeChangedFcn callback.

MATLAB resumes the executing the running callback when the interrupting callback completes.

The callback properties to which Interruptible can apply depend on the objects for which the callback properties are defined:

- For figures, the Interruptible property only affects callback routines defined for these properties:
 - ButtonDownFcn
 - KeyPressFcn
 - KeyReleaseFcn
 - WindowButtonDownFcn
 - WindowButtonMotionFcn
 - WindowButtonUpFcn
 - WindowScrollWheelFcn

For callbacks that execute continuously, setting the figure's Interruptible property to 'Off' might be necessary if callbacks from other objects or GUIs could fire while such interactions are occurring. The rationale is, do not interrupt callbacks that continuously execute unless there is a specific reason to do so.

- For GUI components, Interruptible applies to these properties (for components that have these properties):
 - ButtonDownFcn
 - Callback
 - CellSelectionCallback

- KeyPressFcn
- · SelectionChangedFcn
- ClickedCallback
- OffCallback
- OnCallback

To prevent an object's callback from being interrupted repeatedly, set the value of that object's Interruptible property to 'off':

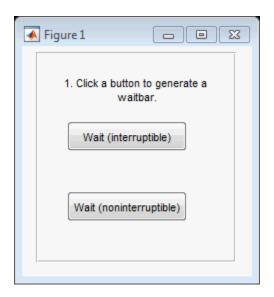
```
h.Interruptible = 'off';
```

How the Busy Action Property Works

You can set an object's BusyAction property to either queue (the default) or cancel. The BusyAction property of the interrupting callback's object is taken into account only if the Interruptible property of the executing callback's object is Off, i.e., the executing callback is not interruptible.

If a noninterruptible callback is executing and an event (such as a mouse click) triggers a new callback, MATLAB software examines the value of the BusyAction property of the object that generated the new callback:

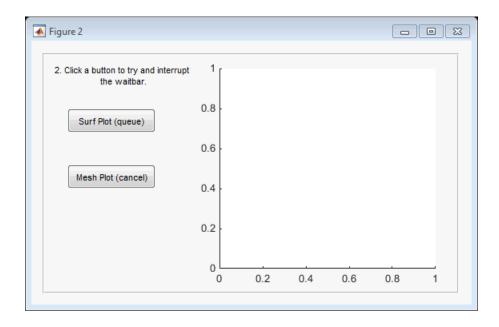
- If the BusyAction value is 'queue', the requested callback is added to the event queue and executes in its turn when the executing callback finishes execution.
- If the value is 'cancel', the event is discarded and the requested callback does not
 execute.


If an interruptible callback is executing, the requested callback runs when the executing callback terminates or calls drawnow, figure, getframe, pause, or waitfor. The BusyAction property of the requested callback's object has no effect.

Example

This example demonstrates control of callback interruption using the Interruptible and BusyAction properties. It creates two GUIs:

- The first GUI contains two push buttons:
 - · Wait (interruptible) whose Interruptible property is on
 - · Wait (noninterruptible) whose Interruptible property is off


Clicking either button triggers the button's Callback callback, which creates and updates a waitbar.

This code creates the two Wait buttons and specifies the callbacks that service them.

- The second GUI contains two push buttons:
 - Surf Plot (queue) whose BusyAction property is queue
 - Mesh Plot (cancel) whose BusyAction property is cancel

Clicking either button triggers the button's Callback callback to generate a plot in the axes.

This code creates the two plot buttons and specifies the callbacks that service them.

Using the Example GUIs

Click here to run the example GUIs.

Note This link executes MATLAB commands and is designed to work within the MATLAB Help browser. If you are reading this online or in a PDF, go to the corresponding section in the MATLAB Help Browser to use the link.

To see the interplay of the Interruptible and BusyAction properties:

- 1 Click one of the Wait buttons in the first GUI. Both buttons create and update a waitbar.
- While the waitbar is active, click either the **Surf Plot** or the **Mesh Plot** button in the second GUI. The **Surf Plot** button creates a **surf** plot using **peaks** data. The **Mesh Plot** button creates a **mesh** plot using the same data.

The following topics describe what happens when you click specific combinations of buttons:

Click a Wait Button

The Wait buttons are the same except for their Interruptible properties. Their Callback callbacks, which are essentially the same, call the utility function create_update_waitbar which calls waitbar to create and update a waitbar. The Wait (Interruptible) button Callback callback, wait_interruptible, can be interrupted each time waitbar calls drawnow. The Wait (Noninterruptible) button Callback callback, wait_noninterruptible, cannot be interrupted (except by specific callbacks listed in "How the Interruptible Property Works" on page 13-3).

This is the Wait (Interruptible) button Callback callback, wait_interruptible:

```
function wait_interruptible(hObject,eventdata)
    % Disable the other push button.
    h_noninterrupt.Enable = 'off';
    % Clear the axes in the other GUI.
    cla(h_axes2,'reset')
    % Create and update the waitbar.
    create_update_waitbar
    % Enable the other push button
    h_noninterrupt.Enable = 'on';
end
```

The callback first disables the other push button and clears the axes in the second GUI. It then calls the utility function create_update_waitbar to create and update a waitbar. When create update waitbar returns, it enables the other button.

Click a Plot Button

What happens when you click a **Plot** button depends on which **Wait** button you clicked first and the **BusyAction** property of the **Plot** button.

• If you click **Surf Plot**, whose **BusyAction** property is **queue**, MATLAB software queues the **Surf Plot** callback **surf queue**.

If you clicked the **Wait (interruptible)** button first, **surf_queue** runs and displays the surf plot when the waitbar issues a call to **drawnow**, terminates, or is destroyed.

If you clicked the **Wait (noninterruptible)** button first, surf_queue runs only when the waitbar terminates or is destroyed.

This is the surf queue callback:

 If you click Mesh Plot, whose BusyAction property is cancel, after having clicked Wait (noninterruptible), MATLAB software discards the button click event and does not queue the mesh cancel callback.

If you click **Mesh Plot** after having clicked **Wait (interruptible)**, the **Mesh Plot** BusyAction property has no effect. MATLAB software queues the **Mesh Plot** callback, mesh_cancel. It runs and displays the mesh plot when the waitbar issues a call to drawnow, terminates, or is destroyed.

```
This is the mesh_plot callback:
```

View the Complete GUI Code File

If you are reading this in the MATLAB Help browser, click here to display a complete listing of the code used in this example in the MATLAB Editor.

Note This link executes MATLAB commands and is designed to work within the MATLAB Help browser. If you are reading this online or in a PDF, go to the corresponding section in the MATLAB Help Browser to use the links.

Control Program Execution Using Timer Objects

If you create a GUI that performs regularly scheduled tasks, such as acquiring data, updating a display, polling devices or services, or autosaving results, you can manage the activity with timers. Timers are MATLAB objects that time execution of functions and programs. Timers have properties that you can customize for your application. For example, you can make them execute once or repeatedly, wait before running, and handle delays in execution. The following callbacks are among these properties.

Callback Property	Description	Examples of Use
StartFcn	Function the timer calls when it starts	Open an input file or output file, or initialize variables.
TimerFcn	Timer callback function that triggers actions that the timer controls	Acquire new data or flush old data, or update a display.
StopFcn	Function the timer calls when it stops	Close input or output files, or compute statistics for session.
ErrorFcn	Function that the timer executes when an error occurs (this function executes before the StopFcn.).	Called when a timeout occurs. You can specify conditions under which this can happen.

You can include any of these callbacks in your GUI code file. Your code also needs to create and configure the timer object when your GUI opens, and delete the timer before your GUI closes. To start a timer, call its start method. The timer executes its StartFcn, begins counting, and executes its first TimerFcn callback when the period specified by the StartDelay property expires. To halt a timer, call its stop method.

Caution Timers are independent objects that operate asynchronously, as do GUIs. A timer callback can change or even delete data used by your GUI code or code it calls. It can also fail to execute due to timing out. If such possibilities exist for your application, your code must guard against them. For example, it can test whether a variable continues to exist, or place code that can fail within try/catch blocks

For an example of a GUI that uses a timer, see "Automatically Refresh Plot in a GUIDE GUI". For more information about setting up timers and controlling their run-time characteristics, see "Use a MATLAB Timer Object" and the timer reference page.

Examples of GUIs Created Programmatically

- · "Axes, Menus, and Toolbars in Programmatic GUIs" on page 14-2
- "Synchronized Data Presentations in a Programmatic GUI" on page 14-12
- "Lists of Items in a Programmatic GUI" on page 14-20
- "GUI That Accepts and Returns Arguments" on page 14-32

Axes, Menus, and Toolbars in Programmatic GUIs

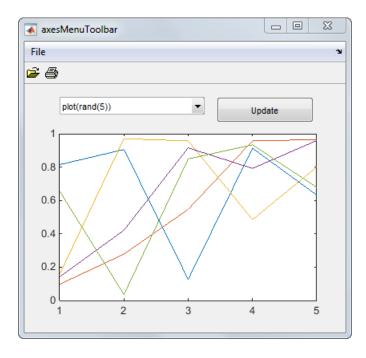
In this section...

"About the Example" on page 14-2

"View the Example Code" on page 14-3

"Generate the Graphing Commands and Data" on page 14-3

"Create the GUI and Its Components" on page 14-4


"Initialize the GUI" on page 14-7

"Define the Callbacks" on page 14-8

"Updating the Plot" on page 14-11

About the Example

When you run this GUI, it initially displays a plot of five random numbers generated by the MATLAB rand(5) command.

You can select other plots in the pop-up menu. Clicking the **Update** button displays the currently selected plot on the axes.

The GUI File menu has three options:

- Open displays a dialog from which you can open files on your computer.
- Print opens the Print dialog. Clicking Yes in the Print dialog prints the plot.
- · Close closes the GUI.

The GUI toolbar has two buttons:

- * The Open button *performs the same function as the **Open** menu option. It displays a dialog from which you can open files on your computer.
- The Print button performs the same function as the **Print** menu option. It opens the Print dialog. Clicking **Yes** in the Print dialog prints the plot.

View the Example Code

To obtain copies of the GUI files for this example, follow these steps:

- 1 Set your current folder to one to which you have write access.
- **2** Copy the example code and display the example code files in the Editor by executing these MATLAB commands:

```
copyfile(fullfile(docroot, 'techdoc','creating_guis',...
  'examples','axesMenuToolbar.m')),...
  fileattrib('axesMenuToolbar.m', '+w');
copyfile(fullfile(docroot, 'techdoc','creating_guis',...
  'examples','iconRead.m')),fileattrib('iconRead.m', '+w');
edit axesMenuToolbar.m
edit iconRead.m
```

Generate the Graphing Commands and Data

The program file, axesMenuToolbar.m, defines two variables mOutputArgs and mPlotTypes.

moutputArgs is a cell array that holds output values that are optionally returned by the function.

```
mOutputArgs = {}; % Variable for storing output when GUI returns
```

mPlotTypes is a 5-by-2 cell array that specifies graphing functions and data. The first column contains the strings that are used to populate the pop-up menu. The second column contains functions (anonymous functions) for creating the plots.

```
% Example plot types shown by this GUI
mPlotTypes = {...
              'plot(rand(5))',
                                     @(a)plot(a,rand(5));
              'plot(sin(1:0.01:25))', @(a)plot(a,sin(1:0.01:25));
             'bar(1:.5:10)',
                                     @(a)bar(a,1:.5:10);
              'plot(membrane)',
                                     @(a)plot(a,membrane);
              'surf(peaks)',
                                     @(a)surf(a,peaks)};
```

Because these variables are created in the main function, they are accessible from within the nested callback functions in the same file.

Create the GUI and Its Components

Like the moutputArgs and mPlotTypes variables, the UI components are created inside the main function, so they are accessible from within the nested callback functions in the same file.

The Main Figure

This command creates the figure window:

```
hMainFigure = figure(...
                                % The main GUI figure
                     'MenuBar', 'none', ...
                     'Toolbar', 'none', ...
                     'HandleVisibility','callback', ...
                     'Color', get(groot,...
                               'defaultuicontrolbackgroundcolor'));
```

- Setting the MenuBar and Toolbar properties to 'none' prevents the default menus from displaying and hides the default toolbar.
- Setting the HandleVisibility property to 'callback' ensures that the figure object can be accessed only from within a GUI callback.
- The Color property defines the background color of the figure. In this case, it is set to be the same as the default background color of uicontrol objects, such as the **Update** push button. The factory default background color of uicontrol objects is the system default and can vary from system to system. This statement ensures that the figure's background color matches the background color of the components.

The Axes

This command creates the axes:

- The axes function creates the axes. Setting the axes Parent property to hMainFigure makes it a child of the main figure.
- Setting the Units property to 'normalized' ensures that the axes resizes proportionately when the user resizes the figure window.
- The Position property is a 4-element vector that specifies the location of the axes within the figure and its size: [distance from left, distance from bottom, width, height].

The Pop-Up Menu

This command creates the pop-up menu:

- The uicontrol function creates various user interface controls based on the value of the Style property. Here, the Style property is set to 'popupmenu'.
- For a pop-up menu, the String property defines the list of items in the menu. Here it is defined as a 5-by-1 cell array of strings derived from the cell array mPlotTypes.

The Update Push Button

This command creates the **Update** push button:

 The uicontrol function creates various user interface controls based on the value of the Style property. This statement does not set the Style property because its default is 'pushbutton'.

- For a push button, the String property defines the label on the button. Here it is defined as the string, 'Update'.
- Setting the Callback property to @hUpdateButtonCallback specifies the function, hUpdateButtonCallback to be the function that executes when the user presses the push button. This callback function is a nested function in the same file.

The File Menu and Its Menu Items

These statements define the **File** menu and the three items it contains.

```
hFileMenu
                   uimenu(...
                                     % File menu
                         'Parent', hMainFigure,...
                         'HandleVisibility','callback', ...
                         'Label', 'File');
hOpenMenuitem =
                   uimenu(...
                                     % Open menu item
                         'Parent', hFileMenu,...
                         'Label','Open',...
                         'HandleVisibility','callback', ...
                         'Callback', @hOpenMenuitemCallback);
                   uimenu(...
hPrintMenuitem =
                                     % Print menu item
                         'Parent',hFileMenu,...
                         'Label', 'Print',...
                         'HandleVisibility','callback', ...
                         'Callback', @hPrintMenuitemCallback);
hCloseMenuitem =
                   uimenu(...
                                     % Close menu item
                         'Parent',hFileMenu,...
                         'Label','Close',...
                         'Separator', 'on',...
                         'HandleVisibility','callback', ...
                         'Callback', @hCloseMenuitemCallback);
```

• The uimenu function creates both the main menu, File, and the menu items under it. For the main menu and each of its items, set the Parent property to the handle of the desired parent to create the menu hierarchy you want. Here, setting the Parent property of the File menu to hMainFigure makes it the child of the main figure. This statement creates a menu bar in the figure and puts the File menu on it.

For each of the menu items, setting its Parent property to the handle of the parent menu, hFileMenu, causes it to appear on the File menu.

- The Label property defines the text label for each menu item.
- Setting the Separator property to 'on' for creates a separator line above a menu item.

• For each of the menu items, the Callback property specifies the callback that services that item. These callbacks are defined as nested functions in the same file.

The Toolbar

These statements define the toolbar and the two buttons it contains:

```
% Toolbar for Open and Print buttons
hToolbar = uitoolbar(...
                   'Parent', hMainFigure, ...
                   'HandleVisibility', 'callback');
hOpenPushtool =
                  uipushtool(... % Open toolbar button
                   'Parent',hToolbar,...
                   'TooltipString','Open File',...
                   'CData',iconRead(fullfile(matlabroot,...
                        'toolbox\matlab\icons\opendoc.mat')),...
                   'HandleVisibility','callback', ...
                   'ClickedCallback', @hOpenMenuitemCallback);
                                   % Print toolbar button
hPrintPushtool = uipushtool(...
                    'Parent',hToolbar,...
                    'TooltipString', 'Print Figure',...
                    'CData',iconRead(fullfile(matlabroot,...
                         'toolbox\matlab\icons\printdoc.mat')),...
                    'HandleVisibility','callback', ...
                    'ClickedCallback', @hPrintMenuitemCallback):
```

- The uitoolbar function creates the toolbar.
- The uipushtool function creates the two push buttons in the toolbar.
- The uipushtool TooltipString property assigns a tool tip that displays when the user moves the mouse pointer over the button and leaves it there.
- The CData property specifies a truecolor image that displays on the button. For these two buttons, the utility iconRead function supplies the image.
- For each of the uipushtools, the ClickedCallback property specifies the callback that executes when the user clicks the buttons.

Initialize the GUI

This code creates the plot that appears when the GUI initially displays. This code also checks to see if the user provided an output argument.

```
% Update the plot with the initial plot type
localUpdatePlot();
% Define default output and return it if it is requested by users
mOutputArgs{1} = hMainFigure;
if nargout>0
    [varargout{1:nargout}] = mOutputArgs{:};
```

end

- The localUpdatePlot function creates a plot in the axes. The localUpdatePlot function gets the pop-up menu's Value property to determine which plot the user selected.
- The default output argument is the handle of the main figure.

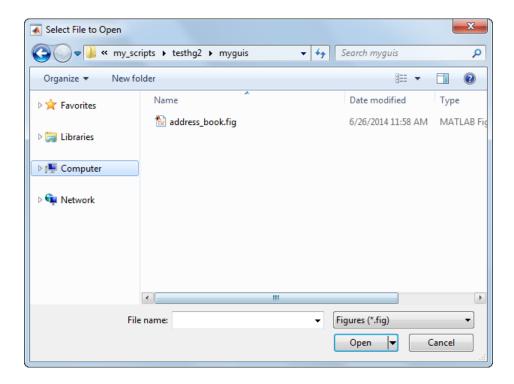
Define the Callbacks

This topic defines the callbacks that service the components of the GUI. Because the callback definitions are nested, they have access to all data and components defined in the main function.

Although the GUI has six components that are serviced by callbacks, there are only four callback functions. This is because the **Open** menu item and the Open toolbar button share the same callbacks. Similarly, the **Print** menu item and the Print toolbar button share the same callbacks.

Update Button Callback

The hUpdateButtonCallback function services the **Update** push button. Clicking the **Update** button triggers the execution of this callback function.

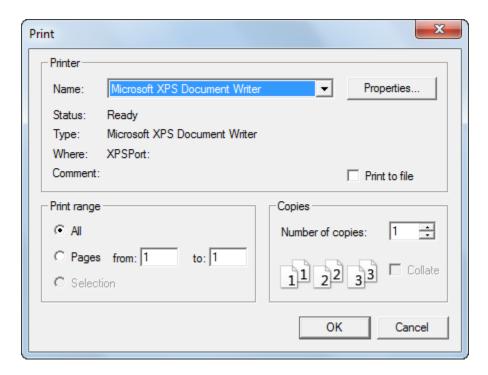

Open Menu Item Callback

The hOpenMenuitemCallback function services the **Open** menu item and the Open toolbar button . Selecting the menu item or clicking the toolbar button triggers the execution of this callback function.

```
function hOpenMenuitemCallback(hObject, eventdata)
% Callback function run when the Open menu item is selected
    file = uigetfile('*.m');
    if ~isequal(file, 0)
        open(file);
    end
```

end

The hOpenMenuitemCallback function first calls the uigetfile function to open the standard dialog box for retrieving files. This dialog box lists all files having the extension .fig. If uigetfile returns a file name, the function then calls the open function to open it.

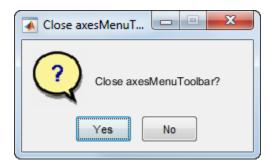


Print Menu Item Callback

The hPrintMenuitemCallback function services the **Print** menu item and the Print toolbar button . Selecting the menu item or clicking the toolbar button triggers the execution of this callback function.

```
function hPrintMenuitemCallback(hObject, eventdata)
% Callback function run when the Print menu item is selected
    printdlg(hMainFigure);
end
```

The hPrintMenuitemCallback function calls the printdlg function. This function opens the standard system dialog box for printing the current figure. Your print dialog box might look different than the one shown here.



Close Menu Item Callback

The hCloseMenuitemCallback function services the Close menu item. It executes when the GUI user selects Close from the File menu.

```
delete(hMainFigure);
end
```

The hCloseMenuitemCallback function calls the questdlg function to create and open the question dialog box shown in the following figure.

If the user clicks the **No** button, the callback returns. If the GUI user clicks the **Yes** button, the callback deletes the GUI.

Updating the Plot

Here is the code for the localUpdatePlot function. Because it is a nested function, localUpdatePlot has access to the same data and UI components as the other callback functions.

```
function localUpdatePlot
% Helper function for plotting the selected plot type
    mPlotTypes{hPlotsPopupmenu.Value, 2}(hPlotAxes);
end
```

The localUpdatePlot function gets the pop-up menu Value property to identify the selected menu item from the first column of the mPlotTypes 5-by-2 cell array. Then, localUpdatePlot calls the corresponding anonymous function from the second column in the cell array.

See Also

Axes Properties | Figure Properties | Uicontrol Properties

More About

"Anonymous Functions"

Synchronized Data Presentations in a Programmatic GUI

In this section...

"Techniques Illustrated in the Example" on page 14-12

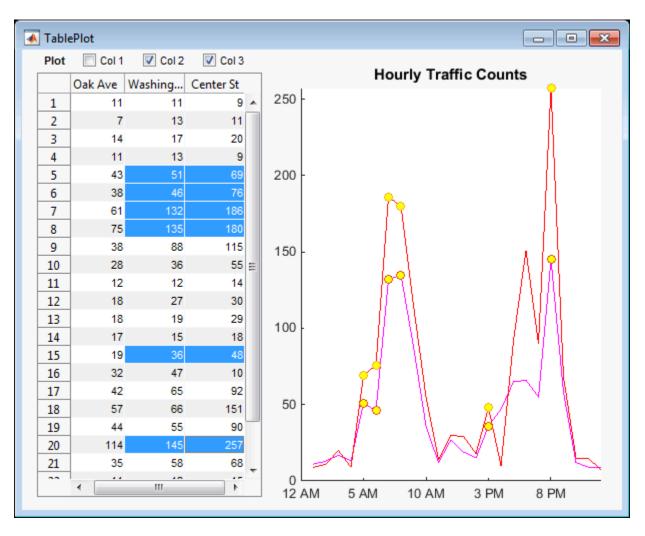
"About the Example" on page 14-12

"View the Example Code" on page 14-14

"Set Up and Interact with the uitable" on page 14-14

Techniques Illustrated in the Example

The example shows how to interact with a uitable and the data it holds by:


- Graphing specific columns of data
- Brushing the graph when the user selects cells in the table

A 2-D axes displays line graphs of the data in response to selecting check boxes and in real time, the results of selecting observations in the table.

About the Example

The example GUI presents data in a three-column table (a uitable object) and enables the user to plot any column of data as a line graph. When the user selects data values in the table, the plot displays markers for the selected observations.

This figure shows the results of plotting two columns and selecting a subset of values in each column.

The GUI displays and removes line plots when the user selects and clears the three check boxes. The circle markers appear and disappear dynamically as the user selects cells in the table. The user need not plot lines to display the markers.

The table displays MATLAB sample data (count.dat) containing hourly counts of vehicles passing three locations. The example does not provide a way to change the data, except by modifying the tableplot.m main function to read in a different data set. Then, you can manually assign appropriate column names and a different title for

the plot. A more natural way to add this capability is to allow the user to supply input arguments to the GUI to identify a data file or workspace variable, and to supply text strings to use for column headers.

View the Example Code

To obtain copies of the GUI files for this example, follow these steps:

- Set your current folder to one to which you have write access. 1
- Copy the example code and display it in the Editor by issuing the following MATLAB commands:

```
copyfile(fullfile(docroot, 'techdoc', 'creating guis',...
  'examples','tableplot.m')),...
  fileattrib('tableplot.m', '+w');
edit tableplot.m
```

Set Up and Interact with the uitable

This example has one file, tableplot.m, that contains its main function plus two local functions (uicontrol callbacks). The main tableplot function creates a figure and populates it with uicontrols and one axes.

The function hides the figure's menu bar because it is not needed.

```
% Create a figure that will have a uitable, axes and checkboxes
figure('Position', [100, 300, 600, 460],...
       'Name', 'TablePlot',... % Title figure
       'NumberTitle', 'off',... % Do not show figure number
       'MenuBar', 'none');
                              % Hide standard menu bar menus
```

The main tableplot function sets up the uitable immediately after loading a data matrix into the workspace. The table's size adapts to the matrix size (matrices for uitables must be 1-D or 2-D).

```
% Load some tabular data (traffic counts from somewhere)
count = load('count.dat');
tablesize = size(count); % This demo data is 24-by-3
% Define parameters for a uitable (col headers are fictional)
colnames = {'Oak Ave', 'Washington St', 'Center St'};
% All column contain numeric data (integers, actually)
colfmt = {'numeric', 'numeric', 'numeric'};
```

The tableplot function performs these tasks:

- Passes the count matrix to the table as the Data parameter.
- Specifies the column names using the ColumnName property
- Specifies that all columns hold numeric data using the ColumnFormat property
- Specifies that all columns have a width of 60 pixels

MATLAB always interprets the ColumnWidth property in pixels

- Provides a tooltip string for the table
- Accepts default values for most of the remaining Uitable Properties.

In the next block of code, the tableplot function sets up an axes on the right side of the figure. It plots lines and markers in response to the user's actions.

```
hold(haxes, 'all')
```

In the next block of code, the tableplot function plots the lineseries for the markers with a call to plot. The plot function graphs the entire count data set (which remains in the workspace after being copied into the table). However, the function hides the markers immediately, only to be revealed when the user selects cells in the data table.

```
% Create an invisible marker plot of the data and save handles
% to the lineseries objects; use this to simulate data brushing.
hmkrs = plot(count, 'LineStyle', 'none',...
                      'Marker', 'o',...
                      'MarkerFaceColor', 'y',...
'HandleVisibility', 'off',...
                       'Visible', 'off');
```

The main function defines three check boxes to control plotting of the three columns of data and two static text strings. You can see the code for this if you display tableplot.m.

The Cell Selection Callback

The select callback function for the CellSelectionCallback property, shows and hides markers on the axes. When the user selects data values in the table, the plot displays markers for the selected observations. This technique is called *data brushing*. However, the data brushing performed by this GUI does not rely on MATLAB data brushing feature.

Here is the select callback code:

```
function select callback(hObject, eventdata)
                Handle to uitable1 (see GCBO)
    % eventdata Currently selected table indices
    % Callback to erase and replot markers, showing only those
    % corresponding to user-selected cells in table.
    % Repeatedly called while user drags across cells of the uitable
       % hmkrs are handles to lines having markers only
        set(hmkrs, 'Visible', 'off') % turn them off to begin
       % Get the list of currently selected table cells
        sel = eventdata.Indices;
                                     % Get selection indices (row, col)
                                     % Noncontiguous selections are ok
        selcols = unique(sel(:,2)); % Get all selected data col IDs
        table = hObject.Data; % Get copy of uitable data
```

```
% Get vectors of x,y values for each column in the selection;
for idx = 1:numel(selcols)
    col = selcols(idx);
    xvals = sel(:,1);
    xvals(sel(:,2) ~= col) = [];
    yvals = table(xvals, col)';
    % Create Z-vals = 1 in order to plot markers above lines
    zvals = col*ones(size(xvals));
    % Plot markers for xvals and yvals using a line object
    hmkrs(col).Visible = 'on';.
    hmkrs(col).XData = xvals;
    hmkrs(col).YData = yvals;
    hmkrs(col).ZData = zvals;
end
```

The function passes the rows and columns of the user-selected cells in eventdata. Indices and copies them into sel. For example, if the user selects all three columns in row 3 of the table, then

```
eventdata =
    Indices: [3x2 double]

sel =
    3    1
    3    2
    3    3

If the user selects rows 5, 6, and 7 of columns 2 and 3, then
```

eventdata =

After hiding all the markers, the callback performs these tasks:

- 1 Identifies the unique columns that the user selected.
- 2 Iterates over the unique columns to find the row indices for the selection.

- **3** Sets the *x*-values for all row indices that do not appear in the selection to empty.
- **4** Uses the vector of *x*-values to copy *y*-values from the table and specify dummy *z*-values.

Setting the z-values ensures that the markers plot on top of the lines.

5 Assigns x-, y-, and z-values to the XData, YData, and ZData of each vector of markers, and makes the markers visible again.

Only markers with nonempty data display.

The Plot Check Box callback

The three **Plot** check boxes all share the same callback, plot_callback. It has a column argument in addition to the standard hObject and eventdata parameters. The column argument identifies which box (and column of data) the callback is for.

The plot_callback also uses handles found in the function workspace for the following purposes:

- htable To fetch table data and column names for plotting the data and deleting lines; the column argument identifies which column to draw or erase.
- haxes To draw lines and delete lines from the axes.
- hprompt To remove the prompt (which only displays until the first line is plotted) from the axes.

Keying on the column argument, the callback takes the following actions:

- Extracts data from the table and calls plot, specifying data from the given column as YData, and setting its DisplayName property to the column's name.
- Deletes the appropriate line from the plot when a check box is deselected, based on the line's DisplayName property.

Here is the plot callback code:

```
colname = colnames{column};
    if (hObject.Value)
        % Turn off the advisory text; it never comes back
        hprompt.Visible = 'off';
        % Obtain the data for that column
        vdata = htable.Data;
        haxes.NextPlot = 'Add';
        % Draw the line plot for column
        plot(haxes, ydata(:,column),...
            'DisplayName', colname,...
            'Color', colors{column});
    else % Adding a line to the plot
        % Find the lineseries object and delete it
        delete(findobj(haxes, 'DisplayName', colname))
    end
end
```

Lists of Items in a Programmatic GUI

In this section...

"About the Example" on page 14-20

"View the Example Code" on page 14-21

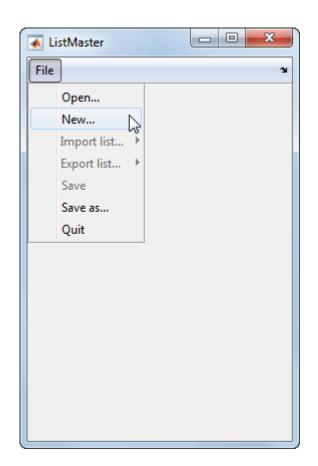
"Use the GUI" on page 14-22

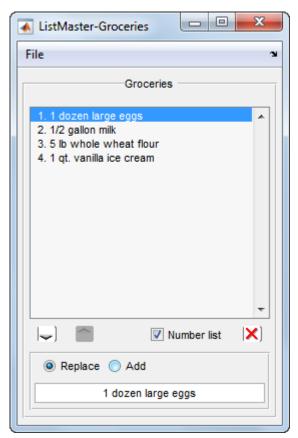
"Program List Master" on page 14-25

"Add an "Import from File" Option to List Master" on page 14-31

"Add a "Rename List" Option to List Master" on page 14-31

About the Example


This GUI creates and manages lists, such as to-do lists, phone numbers, or any set of items. It has these features:


- Ability to create new GUIs from an existing List Master GUI
- A scrolling list box containing a numbered or unnumbered sequence of items
- · A text box and push buttons enabling GUI users to edit, add, delete, and reorder list items
- Capability to import and export list data and to save a list by saving the GUI itself
- A **File** menu for creating, opening, and saving GUIs.

The left image below shows the items available under the File menu. The right image shows a sample list.

The File Menu Items

GUI Containing a Sample List

View the Example Code

The example includes one code file, two MAT-files and a text file:

- · listmaster.m The GUI code file, containing all required local functions
- listmaster_icons.mat Three icons, used as CData for push buttons
- senators110cong.mat A cell array containing phone book entries for United States senators
- * senators110th.txt A text file containing the same data as senators110cong.mat

List Master looks for the listmaster icons.mat MAT-file when creating a new GUI (from File > New menu). The files senators110cong.mat and senators110th.txt are not required to create or operate a GUI; you can use either one to populate a new List Master GUI with data using File > import list.

To obtain copies of the files for this example, follow these steps:

- 1 Set your current folder to one in which you have write access.
- 2 Copy the example files and open listmaster.m in the Editor by executing these commands:

```
copyfile(fullfile(docroot, 'techdoc', 'creating guis', 'examples',...
   'listmaste*.*'),pwd), fileattrib('listmaste*.*','+w'),
copyfile(fullfile(docroot, 'techdoc', 'creating_guis', 'examples',...
   'senators110*.*'),pwd),fileattrib('senators110*.*','+w'),
edit listmaster.m
```

Use the GUI

The GUI can create new instances of itself with **File > New** at any time, and any number of these instances can be open at the same time.

Start List Master

To start using List Master, make sure listmaster. m is on your path, and run the main function.

1 >> listmaster

```
ans =
```

The function opens a blank GUI with the title ListMaster and a File menu and returns its figure handle.

2 Select **New** from the **File** menu to set up the GUI to handle list data.

The GUI presents a dialog box (using inputdlg).

3 Type a name for the list you want to create and click **OK**.

The New menu item's callback, 1mnew, prompts the user for a list name and creates the GUI window with all the UI components.

Because the positions of all controls are specified in normalized Units, the GUI is resizable. Only the button icons and the text fonts have a fixed size.

Import Data into List Master

You can import data into the GUI at any time. If the GUI already contains data, the data you import replaces it.

You can import data from a cell array in the MATLAB workspace. Each element of the cell array must contain a line of text corresponding to a single list item. For example, you can define a list of grocery items as follows:

```
groceries = {'1 dozen large eggs';
              '1/2 gallon milk';
              '5 lb whole wheat flour':
              '1 qt. vanilla ice cream';};
```

If you load the example MAT-file senators110cong. matand display it in the Variables editor, you can see it is structured this way.

Use spaces as separators between words in lists. If a list contains tab characters, the list box does not display them.

As it exists, you cannot import data from a text file using the List Master example code as supplied. It does contain a commented-out **File** menu item for this purpose and a callback for it (lmfileimport) containing no code. See "Add an "Import from File" Option to List Master" on page 14-31 for more information.

You do not need to import data to work with List Master. The GUI allows you to create lists by selecting the **Add** radio button, typing items in the edit text box one at a time, and pressing **Return** to add each one to the list. You can export any list you create.

Export Data from List Master

You can use FileExport listto workspace to save the current list to a cell array in the MATLAB workspace. The lmwsexport callback performs this operation, calling the assignin function to create the variable after you specify its name. If you only want to export a single list item, perform these steps:

- 1 Click on the list box item you want to copy or select the item's text in the edit box.
- 2 Type **Ctrl+C** to copy the item.
- 3 Open a document into which you want to paste the item
- 4 Place the cursor where you want to paste the item and type Ctrl+V.

You cannot paste from the system clipboard into the list box, because the content of a list box can only be changed programmatically, by setting its String property. This means

that to paste new items into a list, you must add them one at a time via the edit text box. It also means you cannot copy the entire list and then paste it into another document.

You can save the entire contents of a list to a text file using **File > Export list > to file**. That menu item's callback (**Imfileexport**) opens a standard file dialog to navigate to a folder and specify a file name. Then, **Imfileexport** calls **fopen**, **fprintf**, and **fclose** to create, write, and close the file.

Save the GUI

You do not need to export a list to save it. The **Save** and **Save** as menu options save lists by saving the entire GUI. They call the saveas function to write the figure and all its contents as a FIG-file to disk. You can reopen the saved GUI by double-clicking it in the Current Folder browser, or by calling hgload('figfilename.fig') from the Command Line.

Program List Master

The List Master GUI code file contains 22 functions, organized into five groups, which are described below.

List Master Main Program

The main function, listmaster, opens a figure window. Then, listmaster calls the local function, lm_make_file_menu, to create the File menu. The following table describes the menu items and lists their callbacks.

Menu Item	How Used	Callback
Open	Opens an existing List Master figure	lmopen
New	Creates a List Master by adding controls to the initial GUI or to a new figure if the existing one already contains a list	lmnew
Import list	Loads list data from a workspace cell array	lmwsimport
Export list	Creates a cell array or text file containing the current list	lmwsexport, lmfileexport
Save	Saves current List Master and its contents as a FIG-file	lmsave

Menu Item	How Used	Callback
Save as	Saves current List Master to a different FIG-file	lmsaveas
Quit	Exits List Master, with option to save first	lmquit

After creating a blank GUI with a **File** menu, the **listmaster** function exits.

The main function sets up the figure as follows:

```
fh = figure('MenuBar','none', ...
        'NumberTitle','off', ...
               'Name', 'ListMaster', ...
                'Tag','lmfigtag', ...
    'CloseRequestFcn', @lmquit, ...
              'Units','pixels', ...
           'Position', pos);
```

Turning off the MenuBar eliminates the default figure window menus, which the program later replaces with its own File menu. NumberTitle is turned off to eliminate a figure number in its title bar.

Here is the code that calculates the initial position of the GUI window:

```
su = get(groot, 'Units');
set(groot, 'Units', 'pixels')
scnsize = get(groot, 'ScreenSize');
scnsize(3) = min(scnsize(3),1280); % Limit superwide screens
figx = 264; figy = 356;
                                     % Default (resizable) GUI size
pos = [scnsize(3)/2-figx/2 scnsize(4)/2-figy/2 figx figy];
set(groot, 'Units', su)
                            % Restore default root screen units
```

The Open menu option only opens figures created by listmaster.m. Every List Master figure has its Tag set to lmfigtag. When the program opens a FIG-file, it uses this property value to determine that figure is a List Master GUI. If the Tag has any other value, the program closes the figure and displays an error.

The Quit menu option closes the GUI after checking whether the figure needs to be saved. If the contents have changed, its callback (lmquit) calls the lmsaveas callback to give the user an opportunity to save. The figure's CloseRequestFcn also uses the **Imquit** callback when the user clicks the figure's close box.

List Master Setup Functions

Although the initial GUI has no controls other than a menu, the user can select **File** > **Save as** to save a blank GUI as a FIG-file. Opening the saved FIG-file has the same result as executing the listmaster function.

The user can create a new list by selecting **File > New**. This executes setup functions that populate the GUI with uicontrols. The lmnew callback manages these tasks, calling setup functions in the following sequence. The three setup functions are listed and described below.

Setup Function	How Used
lm_get_list_name	Calls inputdlg to get name for new list, enforcing size limit of 32 characters
lm_make_ctrl_btns	Creates three push buttons for list navigation and a check box to control line numbering. This function also loads listmaster_icons.mat and adds icons to the to push buttons. Finally, it sets each button's callback functions.
lm_make_edit_panel	Creates a button group with two radio buttons that control the editing mode. This function also places default text in the edit text box.

Imnew then calls the enable_updown function. The enable_updown function sets the Enable property of the pair of push buttons that migrate items higher or lower in the list box. It disables the Move Up button when the selected item is at the top of the list. It also disables the Move Down button when the selected item is at the bottom of the list. Then, the enable_updown function copies the current list selection into the edit text box. Finally, it sets the "dirty" flag in the figure's application data to indicate that the GUI's data or state has changed.

Having set up the GUI to receive data, the 1mnew function enables the File > Import list menu option and its submenu

List Master Menu Callbacks

List Master has seven menu items and three submenu items. To obtain user input, the menu callbacks call these MATLAB functions:

• errordlg (Open, Export list to workspace, Export list to file)

- inputdlg (New, Export list to workspace)
- listdlg (Import list)
- questdlg (Export list to workspace, Quit)
- uigetfile (Open)
- uiputfile (Export list to file, Save as)

The New menu item has two modes of operation, depending on whether the GUI is blank or already contains a list box and controls. The 1mnew callback determines the state of the GUI by examining the figure's Name property:

- If the GUI is blank, the name is "ListMaster".
- If the GUI contains a list, the name is "Listmaster-" followed by a list name.

Called from a blank GUI, the function requests a name, and then populates the figure with all controls. Called from a GUI that contains a list, 1mnew calls the main listmaster function to create a new GUI, and uses that figure's handle (instead of its own) when populating it with controls.

List Master List Callbacks

The six callbacks not associated with menu items are listed and described in this table.

Callback Function	How Used
move_list_item	Called by the Move Up and Move Down push buttons to nudge items up and down list
enable_updown	Called from various local functions to enable and disable the Move Up and Move Down buttons and to keep the edit text box and list box synchronized.
delete_list_item	Called from the Delete button to remove the currently selected item from the list; it keeps it in the edit text box in case the GUI user decides to restore it.
enter_edit	A KeypressFcn called by the edit text box when GUI user types a character; it sets the application data Edit flag when the GUI user types Return .
commit_edit	A Callback called by the edit text box when a GUI user types Return or clicks elsewhere; it checks the application

Callback Function	How Used
	data Edit flag set by enter_edit and commits the edit text to the list only if Return was the last key pressed. This avoids committing edits inadvertently.
toggle_list_numbers	Callback for the lmnumlistbtn check box, which prefixes line numbers to list items or removes them, depending on value of the check box

Identify Component Handles

A common characteristic of these and other List Master local functions is their way of obtaining handles for components. Rather than using the <code>guidata</code> function, which many GUIs use to share handles and other data for components, these local functions get handles they need dynamically by looking them up from their Tags, which are hard-coded and never vary. The code that finds handles uses the following pattern:

```
% Get the figure handle and from that, the listbox handle
fh = ancestor(hObject, 'figure');
lh = findobj(fh, 'Tag', 'lmtablisttag1');
```

Here, hObject is whatever object issued the callback that is currently executing, and 'lmtablisttag1' is the hard-coded Tag property of the list box. Always looking up the figure handle with ancestor assures that the current List Master is identified. Likewise, specifying the figure handle to findobj assures that only one list box handle is returned, regardless of how many List Master instances are open at the same time.

List Master Utility Functions

Certain callbacks rely on four small utility functions that are listed and described in this table.

Utility Function	How Used
number_list	Called to generate line numbers whenever a list updates and line numbering is on
guidirty	Sets the Boolean dirty flag in the figure's application data to true or false to indicate difference from saved version
isguidirty	Returns logical state of the figure's dirty flag

Utility Function	How Used
	Converts the name of a list (obtained from the figure Name property) into a valid MATLAB identifier, which serves as a default when saving the GUI or exporting its data

List numbering works by adding five spaces before each list entry, then substituting numerals for characters 3, 2, and 1 of these blanks (as needed to display the digits) and placing a period in character 4. The numbers are stripped off the copy of the current item that displays in the text edit box, and then prepended again when the edit is committed (if the Number list check box is selected). This limits the size of lists that can be numbered to 999 items. You can modify number list to add characters to the number field if you want the GUI to number lists longer than that.

Note: You should turn off the numbering feature before importing list data if the items on that list are already numbered. In such cases, the item numbers display in the list, but moving list items up or down in the list does not renumber them.

The quidirty function sets the figure's application data using setappdata to indicate that it has been modified, as follows:

```
function guidirty(fh,yes no)
% Sets the "Dirty" flag of the figure to true or false
setappdata(fh, 'Dirty', yes no);
% Also disable or enable the File->Save item according to yes no
saveitem = findobj(fh, 'Label', 'Save');
if yes no
    if isgraphics(saveitem)
      saveitem.Enable = 'on':
    end
else
    if isgraphics(saveitem)
      saveitem.Enable = 'off';
    end
end
```

The isguidirty function queries the application data with getappdata to determine whether the figure needs to be saved in response to closing the GUI.

Add an "Import from File" Option to List Master

If you want to round out List Master's capabilities, try activating the **File > Import list** > **from file** menu item. You can add this feature yourself by removing comments from lines 106-108 (enabling a **File > Import list > from file** menu item) and adding your own code to the callback. For related code that you can use as a starting point, see the lmfileexport callback for **File > Export list > to file**.

Add a "Rename List" Option to List Master

When you import data to a list, you replace the entire contents of the list with the imported text. If the content of the new list is very different, you might want to give a new name to the list. (The list name appears above the list box). Consider adding a menu item or context menu item, such as **Rename list**. The callback for this item might perform these tasks:

- Call lm_get_list_name to get a name from the GUI user (perhaps after modifying it to let the caller specify the prompt string.)
- · Do nothing if the GUI user cancels the dialog.
- · Obtain the handle of the uipanel with tag 'lmtitlepaneltag'.
- · Set the Title property of the uipanel to the string that the user specifies.

After renaming the list, the user can save the GUI to a new FIG-file by selecting **Save** as. If the GUI had been saved previously, saving it to a new file preserves that version of the GUI with its original name and contents.

GUI That Accepts and Returns Arguments

In this section...

"About the Example" on page 14-32

"Copy and View the Color Palette Code" on page 14-34

"Local Function Summary for Color Palette" on page 14-34

"Code File Organization" on page 14-35

"GUI Programming Techniques" on page 14-36

About the Example

This example shows how to create a GUI that supports optional input and output arguments. The example also shows how to present a standard color selection dialog box to the user.

Use the Color Palette

These are the basic steps for using the color palette.

- 1 Clicking a color cell toggle button makes the program perform these actions:
 - Display the selected color in the preview area.
 - Display the red, green, and blue values for the newly selected color are displayed in the **R**, **G**, and **B** fields in the GUI.
- **2** Clicking the Eraser toggle button is equivalent to selecting no color.
- 3 Clicking the **More Colors** button displays a second dialog box containing more colors.

4 Clicking the close box on the main dialog returns a function handle. You can call the returned function to get the RGB values of the selected color. For example, this code calls the ColorPalette program, which returns a function handle in the variable, getmycolor. The second line calls getmycolor to get the RGB values.

```
getmycolor = colorPalette;
rgb = getmycolor();
```

The getmycolor function returns a 1-by-3 vector of values. It returns a NaN value if the user selects the Eraser button.

Call the colorPalette Function With Input Arguments

You can call the colorPalette function with input arguments:

```
mGetColorFcn = colorPalette('Parent',hPaletteContainer)
```

The colorPalette function accepts property name-value pairs as input arguments. Only the Parent is supported. This property specifies the handle of the parent figure or panel that contains the color palette. If the call to colorPalette does not specify a parent, it uses the current figure, gcf. Unrecognized property names or invalid values are ignored.

Copy and View the Color Palette Code

To obtain copies of the GUI files for this example, follow these steps:

- 1 Set your current folder to one for which you have write access.
- 2 Copy the example code to your folder. Then, open colorPalette.m in the Editor:

```
copyfile(fullfile(docroot, 'techdoc', 'creating_guis', 'examples',...
    'colorPalette.m')), fileattrib('colorPalette.m', '+w');
copyfile(fullfile(docroot, 'techdoc', 'creating_guis', 'examples',...
    'iconRead.m')), fileattrib('iconRead.m', '+w');
copyfile(fullfile(docroot, 'techdoc', 'creating_guis', 'examples',...
    'eraser.gif')), fileattrib('eraser.gif', '+w');
edit colorPalette.m
```

Caution Do not modify and save the files to the examples folder from which you copied them.

Local Function Summary for Color Palette

The color palette example includes the callbacks listed in the following table.

Function	Description
colorCellCallback	Called by hPalettePanelSelectionChanged when any color cell is clicked.
eraserToolCallback	Called by hPalettePanelSelectionChanged when the Eraser button is clicked.
hMoreColorButtonCallback	Executes when the More Colors button is clicked. It calls uisetcolor to open the standard color-selection dialog box, and calls localUpdateColor to update the preview.

Function	Description
hPalettePanelSelectionChanged	Executes when the GUI user clicks on a new color. This is the SectionChangeFcn callback of the uibuttongroup that exclusively manages the tools and color cells that it contains. It calls the appropriate callback to service each of the tools and color cells.

The example also includes the helper functions listed in this table.

Function	Description
layoutComponent	Dynamically creates the Eraser tool and the color cells in the palette. It calls localDefineLayout.
localUpdateColor	Updates the preview of the selected color.
getSelectedColor	Returns the currently selected color which is then returned to the colorPalette caller.
localDefineLayout	Calculates the preferred color cell and tool sizes for the GUI. It calls localDefineColors and localDefineTools
localDefineTools	Defines the tools shown in the palette. In this example, the only tool is the Eraser button.
localDefineColors	Defines the colors that are shown in the array of color cells.
processUserInputs	Determines if the property in a property-value pair is supported. It calls localValidateInput.
localValidateInput	Validates the value in a property-value pair.

Code File Organization

The color palette code uses nested functions. Its code file is organized in the following sequence:

- 1 Comments displayed in response to the help command.
- **2** Data creation. Because the example uses nested functions, defining this data at the top level makes the data accessible to all functions without having to pass them as arguments.
- **3** Command line input processing.

- **4** GUI figure and component creation.
- **5** GUI initialization.
- **6** Callback definitions. These callbacks, which service the GUI components, are local functions of the colorPalette main function and so have access to the data and component handles created at the top level, without their having to be passed as arguments.
- 7 Helper function definitions. These helper functions are local functions of the colorPalette main function and so have access to the data and component handles created at the top level, without their having to be passed as arguments.

GUI Programming Techniques

This topic explains the following GUI programming techniques as they are used in the creation of the colorPalette.

- "Pass Input Arguments to a GUI" on page 14-36
- "Pass Output to a Caller on Returning" on page 14-37

Pass Input Arguments to a GUI

Inputs to the GUI are custom property-value pairs. colorPalette allows one such property: Parent. The names are case-insensitive. The colorPalette syntax is

```
mGetColorFcn = colorPalette('Parent',hPaletteContainer)
```

Definition and Initialization of the Properties

The colorPalette function first defines a variable mInputArgs as varargin to accept the GUI user input arguments.

```
mInputArgs = varargin; % Command line arguments when invoking % the GUT
```

The colorPalette function then defines the valid custom properties in a 3-by-3 cell array.

• The first column contains the property name.

- The second column contains a function handle for the function, localValidateInput, that validates the input property values.
- The third column is the local variable that holds the value of the property.

colorPalette then initializes the properties with default values.

```
mPaletteParent = []; % Use input property 'parent' to initialize
```

Process the Input Arguments

The processUserInputs helper function processes the input property-value pairs. colorPalette calls processUserInputs before it creates the components, to determine the parent of the components.

```
% Process the command line input arguments supplied when
% the GUI is invoked
processUserInputs();
```

- 1 processUserInputs sequences through the inputs, if any, and tries to match each property name to a string in the first column of the mPropertyDefs cell array.
- 2 If it finds a match, processUserInputs assigns the value that was input for the property to its variable in the third column of the mPropertyDefs cell array.
- **3** processUserInputs then calls the helper function specified in the second column of the mPropertyDefs cell array to validate the value that was passed in for the property.

Pass Output to a Caller on Returning

If a host GUI calls the colorPalette function with an output argument, it returns a function handle that the host GUI can call to get the currently selected color.

The host GUI calls colorPalette only once. The call creates the color palette in the specified parent and then returns the function handle.

The data definition section of the colorPalette code file creates a cell array to hold the output:

```
mOutputArgs = {}; % Variable for storing output when GUI returns
```

Just before returning, colorPalette assigns the function handle, mgetSelectedColor, to the cell array mOutputArgs and then assigns mOutputArgs to varargout to return the arguments.

```
mOutputArgs{} = @getSelectedColor;
if nargout>0
    [varargout{1:nargout}] = mOutputArgs{:};
end
```

Apps

- "Find Apps" on page 15-2
- "View App File List" on page 15-3
- "Run, Uninstall, Reinstall, and Install Apps" on page 15-5
- "Install Apps in a Shared Network Location" on page 15-7
- "Change Apps Installation Folder" on page 15-8

Find Apps

Apps are included in some MATLAB products (such as Curve Fitting ToolboxTM, Signal Processing ToolboxTM, and Control System ToolboxTM). In addition, you can write your own apps.

The apps gallery presents all the currently installed apps. To view the gallery, click the **Apps** tab and then, at the end of the **Apps** section, click the arrow.

If you install additional apps that you wrote or received from someone else, they appear in the apps gallery under **My Apps**.

The MATLAB Central File Exchange contains apps covering a range of applications. From there, you can download an app, install it in your apps gallery, and then run it with a single click.

View App File List

In this section...

"Before Installing" on page 15-3

"After Installing" on page 15-3

Before Installing

Before installing an app you or someone else wrote, you can view the list of app files:

- 1 In the Current Folder browser, navigate to the folder to which you downloaded the app.
- 2 Right-click the .mlappinstall file and select Show Details.
- 3 At the bottom of the Current Folder browser, in the **Details** panel, click the View File List expander ▶.

MATLAB displays the list of files in the app.

After Installing

After installing an app you or someone else wrote, you can see the list of app files and the contents of each file:

- 1 Click the desktop **Apps** tab.
- 2 Click the down arrow at the end of the Apps section **-**.
- **3** Under **My Apps**, hover over the installed app.
- **4** Within the tooltip, click the **View File List** expander ▶.

MATLAB displays a list of links to the source files.

5 Click a file link.

The file opens in the MATLAB Editor.

Note: Be aware that if you modify the files in an app, the app behavior can change. If you modify files, and then want to revert back to the original app, reinstall the

original .mlappinstall file. For information on locating the .mlappinstall file, see "Change Apps Installation Folder" on page 15-8.

Run, Uninstall, Reinstall, and Install Apps

In this section...

"Run App" on page 15-5

"Install or Reinstall App" on page 15-5

"Uninstall App" on page 15-6

Run App

To run an installed app (those that install with MathWorks products and apps that you installed separately):

- 1 On the desktop toolstrip, click the **Apps** tab.
- 2 At the end of the **Apps** section, click the down arrow **T**.
- **3** In the apps gallery, browse the apps to find the one you want to run.

Hover over an app button to see a tooltip describing the app.

4 Click the app button.

You can run multiple custom apps concurrently, including multiple instances of the same app.

Install or Reinstall App

To install or reinstall an app that you or someone else wrote:

- 1 On the desktop toolstrip, click the **Apps** tab.
- 2 In the File section, click Install App.
- **3** In the Install App dialog box, specify a MATLAB app installer (.mlappinstall) file, and then click **Open**.
- 4 In the App Installer dialog box, click Install or Reinstall.

MATLAB installs or reinstalls the app and displays it in the apps gallery.

When you install an app using the .mlappinstall file, MATLAB manages the MATLAB path for you, so you can run the app from the apps gallery without making adjustments to your desktop environment.

Uninstall App

To uninstall an app that appears in the apps gallery under My Apps:

- 1 On the desktop toolstrip, click the Apps tab.
- 2 On the far right of the **Apps** section, click the down arrow **T**.
- 3 In the apps gallery, under My Apps, right-click the app, and select Uninstall.

Hover over an app button to see a tooltip describing the app.

MATLAB deletes the app code from disk and removes the app from the apps gallery.

Install Apps in a Shared Network Location

If you are responsible for administering MATLAB software for your business group, you might consider installing apps in a shared network location. This can be useful, for instance, if a member of your technical staff creates GUIs and packages them as apps that several staff members use. You control installation, upgrades, and deinstallation to ensure every staff member uses the same version of each app.

- 1 Install each app within the same write-protected, shared network folder.
- **2** Direct staff members to change their apps preferences to specify the network folder as the apps installation folder.

For details, see "Change Apps Installation Folder".

As needed, reinstall an app to upgrade it to a new version or revert it to an earlier version. When an app is no longer used, you can uninstall it. For details see, "Install or Reinstall App" on page 15-5 and "Uninstall App" on page 15-6.

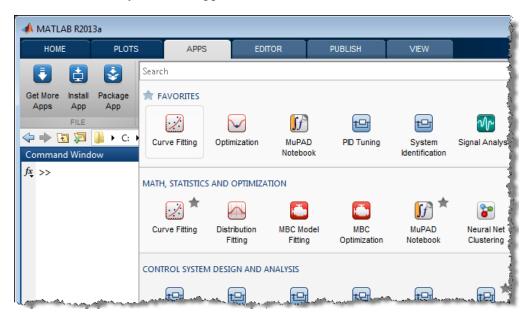
Change Apps Installation Folder

By default, MATLAB installs apps from .mlappinstall files in the userpath \Apps \appname folder. The userpath is the path returned by userpath, and appname is the name of the installed app (sometimes with an additional character added to the name).

To change the apps installation folder:

- On the **Home** tab, in the **Environment** section, click **Preferences** > MATLAB > Apps.
- 2 In the **Apps Install Folder** field, specify a folder name to which you have write access.
- 3 Click OK.

Note: If you change the app installation folder, then apps installed prior to the change (other than those installed with MATLAB products) are no longer accessible from the apps gallery. To make those apps accessible again, move their appname folders and contents to the new installation folder, and then restart MATLAB.


Packaging GUIs as Apps

- "Apps Overview" on page 16-2
- "Package Apps" on page 16-5
- "Modify Apps" on page 16-7
- "Share Apps" on page 16-8
- "MATLAB App Installer File mlappinstall" on page 16-9
- "Dependency Analysis" on page 16-10

Apps Overview

What Is an App?

A MATLAB app is a self-contained MATLAB program with a graphical user interface that automates a task or calculation. All the operations required to complete the task — getting data into the app, performing calculations on the data, and getting results are performed within the app. Apps are included in many MATLAB products. In addition, you can create your own apps. The **Apps** tab on the MATLAB Toolstrip displays all currently installed apps.

Where to Get Apps

There are two key ways to get apps:

· MATLAB Products

Many MATLAB products, such as Curve Fitting Toolbox, Signal Processing Toolbox, and Control System Toolbox include apps. In the apps gallery, you can see the apps that come with your installed products.

· Create Your Own

You can create your own MATLAB app and package it into a single file that you can distribute to others. The apps packaging tool automatically finds and includes all the files needed for your app. It also identifies any MATLAB products required to run your app.

You can share your app directly with other users, or share it with the MATLAB user community by uploading it to the MATLAB File Exchange. When others install your app, they do not need to be concerned with the MATLAB search path or other installation details.

Watch this video for an introduction to creating apps:

Packaging and Installing MATLAB Apps (2 min, 58 sec)

Tip User-contributed code (including some apps) is available from the MATLAB File Exchange. You may also find functions and example code there that is useful as a foundation for an app you want to build.

Why Create an App?

When you create an app package, MATLAB creates a single app installation file (.mlappinstall) that enables you and others to easily install your app.

In particular, when you package an app, the app packaging tool:

- Performs a dependency analysis to help you find and add the files your app requires
- Reminds you to add shared resources and helper files
- Stores information you provide about your app with the app package, including a
 description, a list of additional MATLAB products required by your app, and a list of
 supported platforms
- Automates app updates (versioning)

In addition when others install your app:

- It is a one-click installation.
- · Users do not need to manage the MATLAB search path or other installation details.
- · Your app appears alongside MATLAB toolbox apps in the apps gallery.

Best Practices and Requirements for Creating an App

Best practices:

- An app should be an interactive application written in the MATLAB language that has a graphical user interface.
- All interaction with the app should be through the graphical user interface.
- The app should be reusable. A user should not have to restart the app to use different data or inputs with it.
- The main function should return the handle of the main figure. (The main function created by GUIDE returns the figure handle by default.)
 - Although not a requirement, doing so enables MATLAB to remove the app files from the search path when users exit the app.
- If you want to share your app on MATLAB File Exchange you must release it under a BSD license in addition, there are restrictions on the use of binary files such as MEX-files, p-coded files or DLLs.

Requirements:

- The main file must be a function (not a script).
- Because you invoke apps by clicking an icon in the apps gallery, the main function cannot have input arguments. (It can, however, take optional arguments.)

Package Apps

Package GUIs you create into an app package for sharing with others. When you create an app package MATLAB creates a single app installation file (.mlappinstall) that enables you and others to install your app and access it from the apps gallery without concern for installation details or the MATLAB path.

Note: As you enter information in the Package Apps dialog box, MATLAB creates and saves a .prj file continuously. A .prj file contains information about your app, such as included files and a description. Therefore, if you exit the dialog box before clicking the **Package** button, the .prj file remains, even though a .mlappinstall file is not created. This enables you to quit and resume the app creation process where you left off.

To create an app installation file:

- 1 On the desktop Toolstrip, click the **Apps** tab.
- 2 In the File section, click Package App.
- **3** Click **Add main file** and specify the file that you use to run your GUI.

The main file must be callable with no input, and must be a function or method, not a script. MATLAB analyzes the main file to determine other MATLAB files on which the main file depends. For more information, see "Dependency Analysis" on page 16-10.

Tip The main file must return your main GUI's figure handle if you want MATLAB to remove your app files from the search path when end users exit the GUI. For more information, see "What Is the MATLAB Search Path?"

(Functions created by GUIDE return the figure handle.)

4 Add additional files needed to run your GUI, by clicking **Add files/folders**.

Such files might be data, image, and other files that were not included via dependency analysis.

You can include external interfaces, such as MEX-files, ActiveX, or Java[®] in the .mlappinstall file, although doing so might restrict the systems on which your app can run.

5 Describe your app.

Minimally, you must specify an app name. MATLAB uses the name for the .mlappinstall file and to label your app in the apps gallery if you install the app.

Click the icon to the left of the App Name field to select an icon for your app or to specify a custom icon. MATLAB automatically scales the icon for use in the Install dialog, App gallery, and quick access toolbar.

After you create the package, when you select a .mlappinstall file in the Current Folder browser, MATLAB displays the app description in the **Details** panel. The description also displays in MATLAB Central File Exchange, if you decide to share your app there. The screen shot you select represents your app in File Exchange.

6 Click Package.

As part of the app packaging process, MATLAB creates a .prj file that contains information about your app, such as included files and a description. The .pri file enables you to update the files in your app without requiring you to respecify descriptive information about the app.

7 In the Build dialog box, note the location of the installation file (.mlappinstall), and then click Close.

For information on installing the app, see "Install or Reinstall App" on page 15-5.

Modify Apps

When you update the files included in a .mlappinstall file, you recreate and overwrite the original app. You cannot maintain two versions of the same app.

To update files in an app you created:

- In the Current Folder browser, navigate to the folder containing the project file (.prj) that MATLAB created when you packaged the app.
 - By default, MATLAB writes the .prj file to the folder that was the current folder when you packaged the app.
- **2** From the Current Folder browser, double-click the project file for your app package, *appname*.prj
 - The Package App dialog box opens.
- **3** Adjust the information in the dialog box to reflect your changes by doing any or all of the following:
 - If you made code changes, add the main file again, and refresh the files included through analysis.
 - If your code calls additional files that are not included through analysis, add them.
 - If you want anyone who installs your app over a previous installation to be informed that the content is different, change the version.

Version numbers must be a combination of integers and periods, and can include up to three periods — 2.3.5.2, for example.

Anyone who attempts to install a revision of your app over another version is notified that the version number is changed and has the opportunity to continue or cancel the installation.

4 Click Package.

Share Apps

To share your app with others you only need to give them the .mlappinstall file. All files you added when you packaged the app are included in the .mlappinstall file. When the recipients install your app, they do not need to be concerned with the MATLAB path or other installation details. The .mlappinstall file manages that for them.

You can share your app with others by attaching the .mlappinstall file to an email message, or using any other method you typically use to share files—such as uploading to MATLAB Central File Exchange. Provide instructions on installing your app by referring them to "Install or Reinstall App" on page 15-5.

Note: While .mlappinstall files can contain any files you specify, MATLAB Central File Exchange places additional limitations on submissions. Your app cannot be submitted to File Exchange if it contains any of the following:

- MEX-files
- Other binary executable files, such as DLLs or ActiveX controls. (Data and image files are typically acceptable.)

MATLAB App Installer File — mlappinstall

A MATLAB app installer file, .mlappinstall, is an archive file for sharing a MATLAB GUI as an app. A single app installer file contains everything necessary to install and run an app, including source code, supporting data, information (such as product dependencies), and the app icon.

An .mlappinstall file is a compressed package that conforms to the Open Packaging Conventions (OPC) interoperability standard. You can search for and install .mlappinstall files using your operating system file browser. When you select an .mlappinstall file in Windows Explorer or Quick Look (Mac OS), the browser displays properties for the file, such as Authors and Release. Use these properties to search for .mlappinstall files. Use the Tags property to add custom searchable text to the file.

For information on creating an app installer file for a GUI you created, see "Package Apps".

Dependency Analysis

When you create an app package, MATLAB analyzes your main file and attempts to include all the MATLAB files that it uses in the app package. However, MATLAB does not guarantee to find every dependent file. MATLAB will not find files for functions that your code references as strings (for instance, as arguments to eval, feval, and callback functions). In addition, MATLAB might include some files that the main file never calls when it runs.

Dependency analysis searches for executable files, such as:

- MATLAB files
- P-files
- .fig files
- MEX-files

Dependency analysis does not search for data, image, or other binary files, such as Java classes and .jar files. You must manually add such files when you package your app. The Package Apps dialog box provides an option for doing this.